HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Kinetics of Thermal Conversion of Conjugated Polymers Investigated from Their Optical Absorption Spectra.

Abstract
We report on a phenomenological, theoretical model to calculate the rate constants and activation energies for the thermal conversion reactions from poly(xylylidene tetrahydrothiophenium chloride) (PTHT) into poly(p-phenylenevinylene) (PPV) using the optical absorption spectra of spin-coated films. The probabilities of electron transitions were calculated considering Franck-Condon states with a Gaussian distribution of conjugated segments and molecular excitons. The dependence on the conjugation degree (n) for the energy gap, transition dipole moment, and electron-phonon coupling were obtained semiempirically using published data for PPV. Fitting was performed for the C-C stretching of the aromatic ring 1550 cm(-1), for it is considered the most optically active. The isotherms for consumption and formation of PPV segments were fitted using a first-order and consecutive reactions, respectively. With this modeling we could identify the most probable reactions, where the formation of longer PPV segments n ≥ 3 occurs only via reactions from smaller conjugated segments (i.e., n = 1 and 2). The activation energies tend to decrease with longer conjugation lengths. Significantly, the modeling allows us to predict the conversion temperature and chemical composition yielding a predefined distribution of conjugated segments, which can be applied to any polymer undergoing thermal conversion, decomposition, or photo-oxidation.
AuthorsMarcelo Castanheira da Silva, Osvaldo N Oliveira Jr, Alexandre Marletta
JournalThe journal of physical chemistry. A (J Phys Chem A) Vol. 119 Issue 33 Pg. 8792-8 (Aug 20 2015) ISSN: 1520-5215 [Electronic] United States
PMID26230744 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: