HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Inhibition of spinal 5-HT3R reverted diabetes-induced mechanical hypersensitivity in a GABAAR-mediated neurotransmission-dependent manner.

Abstract
Spinal 5-HT3 receptor (5-HT3R) has been implicated in chronic pain development. The extent to which 5-HT3R contributes to spinal sensitization and diabetic neuropathic pain (DNP) remains elusive and the mechanisms subserving the effects of 5-HT3R activation on spinal pain processing during chronic pain are still unclear. In this study, we evaluated the contribution of spinal 5-HT3R to pain facilitation and spinal sensitization during DNP, exploiting the role of GABAAR-mediated neurotransmission and glial activation in the effects elicited by intrathecal administration of a 5-HT3R antagonist. Mechanical nociception was evaluated by paw pressure test in streptozotocin (STZ)-diabetic and control rats after intrathecal (i.t.) administration of a 5-HT3R antagonist (Y25130). The spinal activation of extracellular signal-regulated kinases (ERKs) pathway and the expression of 5-HT3R, glial fibrillary acidic protein (GFAP; marker of astroglia activation) and ionized calcium binding adaptor molecule 1 (IBA-1; marker of microglia activation) were evaluated at the peak maximum effect of Y25130. The involvement of GABAAR-mediated neurotransmission in the behavioral pain effect of Y25130, was assessed in STZ-diabetic animals receiving i.t. administrations of muscimol (GABAAR agonist). Intrathecal administration of Y25130 reverted mechanical hyperalgesia and decreased the activation of ERKs in STZ-diabetic rats, while no effects were observed in control animals. The spinal activation of GABAAR by i.t. administration of muscimol abolished Y25130-driven antinociception. The expression of IBA-1, GFAP and 5-HT3R was unaltered by treatment. These findings point to a GABA-mediated pronociceptive role of spinal 5-HT3R during DNP.
AuthorsM Silva, D Martins, I Tavares, C Morgado
JournalNeuroscience (Neuroscience) Vol. 304 Pg. 228-39 (Sep 24 2015) ISSN: 1873-7544 [Electronic] United States
PMID26210577 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Retracted Publication)
CopyrightCopyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: