HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Upregulation of Death Receptor 5 and Production of Reactive Oxygen Species Mediate Sensitization of PC-3 Prostate Cancer Cells to TRAIL Induced Apoptosis by Vitisin A.

AbstractBACKGROUND/AIMS:
Although Vitisin A, derived from wine grapes, is known to have cytotoxic, anti-adipogenic, anti-inflammatory and antioxidant effects, the underlying antitumor mechanism has not been investigated in prostate cancer cells to date. In the present study, the apoptotic mechanism of Vitisin A plus TNF-related apoptosis-inducing ligand (TRAIL) in prostate cancer cells was elucidated.
METHODS:
The cytotoxicity of Vitisin A and/or TRAIL against PC-3, DU145 and LNCaP prostate cancer cells was measured by MTT colorimetric assay. Annexin V-FITC Apoptosis Detection kit was used to detect apoptotic cells by flow cytometry. Intracellular levels of ROS were measured by flow cytometry using 2070-diacetyl dichlorofluorescein (DCFDA).
RESULTS:
Combined treatment with Vitisin A and TRAIL enhanced cytotoxicity and also increased sub-G1 population in PC-3 cells better than DU145 or LNCap prostate cancer cells. Similarly, Annexin V and PI staining revealed that combination increased early and late apoptosis in PC-3 cells compared to untreated control. Consistently, combination attenuated the expression of pro-caspases 7/8, DcR1, Bcl-XL or Bcl-2 and activated caspase 3, FADD, DR5 and DR4 in PC-3 cells. Also, combination increased DR5 promoter activity compared to untreated control. Furthermore, combination increased the production of reactive oxygen species (ROS) and DR5 cell surface expression. The ROS inhibitor NAC and silencing of DR5 by siRNA transfection inhibited the ability of combination to induce PARP cleavage and generate ROS.
CONCLUSION:
These findings provide evidence that Vitisin A can be used in conjunction with TRAIL as a potent TRAIL sensitizer for synergistic apoptosis induction via upregulation of DR5 and production of ROS in prostate cancer cells.
AuthorsDeokil Shin, Hee-Young Kwon, Eun Jung Sohn, Moon Sik Nam, Jung Hyo Kim, Jae Chul Lee, Shi-Yong Ryu, Byungchun Park, Sung-Hoon Kim
JournalCellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology (Cell Physiol Biochem) Vol. 36 Issue 3 Pg. 1151-62 ( 2015) ISSN: 1421-9778 [Electronic] Germany
PMID26111475 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Copyright© 2015 S. Karger AG, Basel.
Chemical References
  • Antineoplastic Agents, Phytogenic
  • BCL2 protein, human
  • BCL2L1 protein, human
  • Benzofurans
  • Drug Combinations
  • FADD protein, human
  • Fas-Associated Death Domain Protein
  • GPI-Linked Proteins
  • Phenols
  • Proto-Oncogene Proteins c-bcl-2
  • RNA, Small Interfering
  • Reactive Oxygen Species
  • Receptors, TNF-Related Apoptosis-Inducing Ligand
  • Receptors, Tumor Necrosis Factor, Member 10c
  • TNF-Related Apoptosis-Inducing Ligand
  • TNFRSF10A protein, human
  • TNFRSF10C protein, human
  • TNFSF10 protein, human
  • bcl-X Protein
  • vitisin A
  • Caspase 7
  • Caspase 8
Topics
  • Antineoplastic Agents, Phytogenic (pharmacology)
  • Apoptosis (drug effects)
  • Benzofurans (pharmacology)
  • Caspase 7 (genetics, metabolism)
  • Caspase 8 (genetics, metabolism)
  • Cell Line, Tumor
  • Cell Survival (drug effects)
  • Drug Combinations
  • Drug Synergism
  • Fas-Associated Death Domain Protein (genetics, metabolism)
  • GPI-Linked Proteins (genetics, metabolism)
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Male
  • Phenols (pharmacology)
  • Prostate (drug effects, metabolism, pathology)
  • Proto-Oncogene Proteins c-bcl-2 (genetics, metabolism)
  • RNA, Small Interfering (genetics, metabolism)
  • Reactive Oxygen Species (agonists, metabolism)
  • Receptors, TNF-Related Apoptosis-Inducing Ligand (agonists, antagonists & inhibitors, genetics, metabolism)
  • Receptors, Tumor Necrosis Factor, Member 10c (genetics, metabolism)
  • Signal Transduction
  • TNF-Related Apoptosis-Inducing Ligand (pharmacology)
  • bcl-X Protein (genetics, metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: