HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Controlled synthesis of series NixCo3-xO4 products: Morphological evolution towards quasi-single-crystal structure for high-performance and stable lithium-ion batteries.

Abstract
Transition metal oxides are very promising alternative anode materials for high-performance lithium-ion batteries (LIBs). However, their conversion reactions and concomitant volume expansion cause the pulverization, leading to poor cycling stability, which limit their applications. Here, we present the quasi-single-crystal Ni(x)Co(3-x)O4 hexagonal microtube (QNHM) composed of continuously twinned single crystal submicron-cubes as anode materials for LIBs with high energy density and long cycle life. At the current density of 0.8 A g(-1), it can deliver a high discharge capacities of 1470 mAh g(-1) over 100 cycles (105% of the 2nd cycle) and 590 mAh g(-1) even after 1000 cycles. To better understand what underlying factors lead our QNHMs to achieve excellent electrochemical performance, a series of Ni(x)Co(3-x)O4 products with systematic shape evolution from spherical to polyhedral, and cubic particles as well as circular microtubes consisted of spheres and square microtubes composed of polyhedra have been synthesized. The excellent electrochemical performance of QNHMs is attributed to the unique stable quasi-single-crystal structure, which can both provide efficient electrical transport pathway and suppress the electrode pulverization. It is important to note that such quasi-single-crystal structure would be helpful to explore other high-energy lithium storage materials based on alloying or conversion reactions.
AuthorsYu Zhou, Yong Liu, Wenxia Zhao, Hai Wang, Baojun Li, Xiang Zhou, Hui Shen
JournalScientific reports (Sci Rep) Vol. 5 Pg. 11584 (Jun 24 2015) ISSN: 2045-2322 [Electronic] England
PMID26103885 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: