HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

An adenosine kinase inhibitor, ABT-702, inhibits spinal nociceptive transmission by adenosine release via equilibrative nucleoside transporters in rat.

Abstract
Adenosine kinase (AK) inhibitor is a potential candidate for controlling pain, but some AK inhibitors have problems of adverse effects such as motor impairment. ABT-702, a non-nucleoside AK inhibitor, shows analgesic effect in animal models of pain. Here, we investigated the effects of ABT-702 on synaptic transmission via nociceptive and motor reflex pathways in the isolated spinal cord of neonatal rats. The release of adenosine from the spinal cord was measured by HPLC. ABT-702 inhibited slow ventral root potentials (sVRPs) in the nociceptive pathway more potently than monosynaptic reflex potentials (MSRs) in the motor reflex pathway. The inhibitory effects of ABT-702 were mimicked by exogenously applied adenosine, blocked by 8CPT (8-cyclopentyl-1,3-dipropylxanthine), an adenosine A1 receptor antagonist, and augmented by EHNA (erythro-9-(2-hydroxy-3-nonyl) adenine), an adenosine deaminase (ADA) inhibitor. Equilibrative nucleoside transporter (ENT) inhibitors reversed the effects of ABT-702, but not those of adenosine. ABT-702 released adenosine from the spinal cord, an effect that was also reversed by ENT inhibitors. The ABT-702-facilitated release of adenosine by way of ENTs inhibits nociceptive pathways more potently than motor reflex pathways in the spinal cord via activation of A1 receptors. This feature is expected to lead to good analgesic effects, but, caution may be required for the use of AK inhibitors in the case of ADA dysfunction or a combination with ENT inhibitors.
AuthorsKen-ichi Otsuguro, Yuki Tomonari, Saori Otsuka, Soichiro Yamaguchi, Yasuhiro Kon, Shigeo Ito
JournalNeuropharmacology (Neuropharmacology) Vol. 97 Pg. 160-70 (Oct 2015) ISSN: 1873-7064 [Electronic] England
PMID26066576 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2015 Elsevier Ltd. All rights reserved.
Chemical References
  • Adenosine A1 Receptor Antagonists
  • Analgesics
  • Enzyme Inhibitors
  • Morpholines
  • Pyrimidines
  • Xanthines
  • ABT 702
  • 9-(2-hydroxy-3-nonyl)adenine
  • 1,3-dipropyl-8-cyclopentylxanthine
  • Adenosine Kinase
  • Adenosine Deaminase
  • Adenine
  • Adenosine
Topics
  • Adenine (analogs & derivatives, pharmacology)
  • Adenosine (metabolism)
  • Adenosine A1 Receptor Antagonists (pharmacology)
  • Adenosine Deaminase (metabolism)
  • Adenosine Kinase (antagonists & inhibitors, metabolism)
  • Analgesics (pharmacology)
  • Animals
  • Animals, Newborn
  • Enzyme Inhibitors (pharmacology)
  • Membrane Potentials (drug effects, physiology)
  • Morpholines (pharmacology)
  • Motor Neurons (drug effects, physiology)
  • Neural Pathways (drug effects, physiopathology)
  • Nociceptive Pain (drug therapy, physiopathology)
  • Pyrimidines (pharmacology)
  • Reflex (drug effects, physiology)
  • Spinal Cord (drug effects, physiopathology)
  • Tissue Culture Techniques
  • Xanthines (pharmacology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: