HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Chondroitinase gene therapy improves upper limb function following cervical contusion injury.

Abstract
Chondroitin sulphate proteoglycans (CSPGs) are known to be important contributors to the intensely inhibitory environment that prevents tissue repair and regeneration following spinal cord injury. The bacterial enzyme chondroitinase ABC (ChABC) degrades these inhibitory molecules and has repeatedly been shown to promote functional recovery in a number of spinal cord injury models. However, when used to treat more traumatic and clinically relevant spinal contusion injuries, findings with the ChABC enzyme have been inconsistent. We recently demonstrated that delivery of mammalian-compatible ChABC via gene therapy led to sustained and widespread digestion of CSPGs, resulting in significant functional repair of a moderate thoracic contusion injury in adult rats. Here we demonstrate that chondroitinase gene therapy significantly enhances upper limb function following cervical contusion injury, with improved forelimb ladder performance and grip strength as well as increased spinal conduction through the injury site and reduced lesion pathology. This is an important addition to our previous findings as improving upper limb function is a top priority for spinal injured patients. Additionally great importance is placed on replication in the spinal cord injury field. That chondroitinase gene therapy has now been shown to be efficacious in contusion models at either thoracic or cervical level is an important step in the further development of this promising therapeutic strategy towards the clinic.
AuthorsNicholas D James, Jessie Shea, Elizabeth M Muir, Joost Verhaagen, Bernard L Schneider, Elizabeth J Bradbury
JournalExperimental neurology (Exp Neurol) Vol. 271 Pg. 131-5 (Sep 2015) ISSN: 1090-2430 [Electronic] United States
PMID26044197 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2015. Published by Elsevier Inc.
Chemical References
  • Chondroitin ABC Lyase
Topics
  • Analysis of Variance
  • Animals
  • Chondroitin ABC Lyase (biosynthesis, genetics, therapeutic use)
  • Disease Models, Animal
  • Electric Stimulation
  • Forelimb (physiology)
  • Gait Disorders, Neurologic (etiology, therapy)
  • Genetic Therapy (methods)
  • Lentivirus (genetics)
  • Male
  • Muscle Strength (physiology)
  • Neural Conduction (physiology)
  • Psychomotor Disorders (etiology, therapy)
  • Rats
  • Rats, Sprague-Dawley
  • Recovery of Function (genetics, physiology)
  • Spinal Cord Injuries (complications, pathology, therapy)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: