HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Mechanotransduction via TRPV4 regulates inflammation and differentiation in fetal mouse distal lung epithelial cells.

AbstractBACKGROUND:
Mechanical ventilation plays a central role in the injury of premature lungs. However, the mechanisms by which mechanical signals trigger an inflammatory cascade to promote lung injury are not well-characterized. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable mechanoreceptor channel has been shown to be a major determinant of ventilator-induced acute lung injury in adult models. However, the role of these channels as modulators of inflammation in immature lungs is unknown. In this study, we tested the hypothesis that TRPV4 channels are important mechanotransducers in fetal lung injury.
METHODS:
Expression of TRPV4 in the mouse fetal lung was investigated by immunohistochemistry, Western blot and qRT-PCR. Isolated fetal epithelial cells were exposed to mechanical stimulation using the Flexcell Strain Unit and inflammation and differentiation were analyzed by ELISA and SP-C mRNA, respectively.
RESULTS:
TRPV4 is developmentally regulated in the fetal mouse lung; it is expressed in the lung epithelium and increases with advanced gestation. In contrast, in isolated epithelial cells, TRPV4 expression is maximal at E17-E18 of gestation. Mechanical stretch increases TRPV4 in isolated fetal epithelial cells only during the canalicular stage of lung development. Using the TRPV4 agonist GSK1016790A, the antagonist HC-067047, and the cytokine IL-6 as a marker of inflammation, we observed that TRPV4 regulates release of IL-6 via p38 and ERK pathways. Interestingly, stretch-induced differentiation of fetal epithelial cells was also modulated by TRPV4.
CONCLUSION:
These studies demonstrate that TRPV4 may play an important role in the transduction of mechanical signals in the fetal lung epithelium by modulating not only inflammation but also the differentiation of fetal epithelial cells.
AuthorsPritha S Nayak, Yulian Wang, Tanbir Najrana, Lauren M Priolo, Mayra Rios, Sunil K Shaw, Juan Sanchez-Esteban
JournalRespiratory research (Respir Res) Vol. 16 Pg. 60 (May 27 2015) ISSN: 1465-993X [Electronic] England
PMID26006045 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Chemical References
  • TRPV Cation Channels
  • Trpv4 protein, mouse
Topics
  • Animals
  • Cell Differentiation (physiology)
  • Cells, Cultured
  • Epithelial Cells (pathology, physiology)
  • Female
  • Fetus
  • Inflammation (metabolism, pathology)
  • Mechanotransduction, Cellular (physiology)
  • Mice
  • Mice, Inbred C57BL
  • Pregnancy
  • Respiratory Mucosa (embryology, metabolism, pathology)
  • TRPV Cation Channels (biosynthesis)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: