HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Amphiphilic copolymers with pendent carboxyl groups for high-efficiency loading and controlled release of doxorubicin.

Abstract
In this paper, biodegradable amphiphilic block copolymer based on methoxy poly(ethylene glycol)-b-poly(5-allyloxy-1,3-dioxan-2-one) (mPEG-b-PATMC) was successfully synthesized in bulk using immobilized porcine pancreas lipase (IPPL) as the catalyst. After thiol-ene "click" reactions occur between thiol group of thioglycolic acid and carbon-carbon double bonds of PATMC segments, the pendent carboxyl-modified copolymer mPEG-b-PATMC-g-SCH2COOH was obtained for high-efficiency loading and controlled release of doxorubicin (DOX) to cancer cells. Both the carboxyl-modified and unmodified copolymers could self-assemble to form nano-sized micelles in aqueous solution, while transmission electron microscopy (TEM) observation showed that the micelles dispersed in spherical shape with nano-size before and after DOX loading. Compared with the unmodified copolymer, the pendent carboxyl-modified structure in mPEG-b-PATMC-g-SCH2COOH could markedly enhance the drug-loading capacity and entrapment efficiency via the electrostatic interaction. The in vitro release studies showed more sustained drug release behavior of mPEG-b-PATMC-g-SCH2COOH without an initial burst, which could be further adjusted by the conditions of ionic strength and pH. Confocal laser scanning microscopy (CLSM) indicated efficient cellular uptake of DOX delivered by mPEG-b-PATMC-g-SCH2COOH, while MTT assays also demonstrated potent cytotoxic activity against HeLa cells.
AuthorsYou-Mei Li, Tao Jiang, Yin Lv, Yan Wu, Feng He, Ren-Xi Zhuo
JournalColloids and surfaces. B, Biointerfaces (Colloids Surf B Biointerfaces) Vol. 132 Pg. 54-61 (Aug 01 2015) ISSN: 1873-4367 [Electronic] Netherlands
PMID26005931 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2015 Elsevier B.V. All rights reserved.
Chemical References
  • Antibiotics, Antineoplastic
  • Polymers
  • Doxorubicin
Topics
  • Antibiotics, Antineoplastic (administration & dosage)
  • Doxorubicin (administration & dosage)
  • Polymers (chemistry)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: