HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Synthesis and evaluation of 3-ylideneoxindole acetamides as potent anticancer agents.

Abstract
Indirubin, an active component in the traditional Chinese medicine formula Danggui Longhui Wan, shows promising anticancer effects. Meisoindigo is an analog derived from indirubin, which is less toxic and appears to be even more potent against cancer. In considering meisoindigo as a structural template for the development of new drugs, we designed and synthesized a series of 3-ylideneoxindole acetamides as novel anticancer agents. The acetamides were then evaluated for in vitro and in vivo anticancer activities. The 3-ylideneoxindole acetamides were found to have better anticancer activity than was indirubin-3'-oxime in several cancer cell lines and also displayed a spectrum of activity similar to that of the drug candidate roscovitine, a CDK inhibitor. Among the 3-ylideneoxindole acetamides, compound 10 showed particularly good efficacy. Cell cycle analysis further revealed that compound 10 arrested cells in the G1 phase and caused an increase in the sub-G1 population, indicating that the apoptosis pathway had been induced. In addition, exposure of cells to compound 10 led to the upregulation of the cell-cycle regulator cyclin D1, which was sustained at a high level. In contrast, the same compound induced a short-term elevation in the level of cyclin E, which was followed by a rapid decrease and the attenuation of Rb phosphorylation. Furthermore, a docking model suggests that compound 10 binds to the active site of CDK4. In testing the therapeutic potency of compound 10 on CT26-xenografted BALB/c mice, a significant reduction in tumor size comparable to that of cisplatin was found when administrated via the i.p. route. The mice presented no loss of body weight, indicating that this compound possesses low toxicity. In the future, we are planning in vivo investigations of these new active anticancer agents to better elucidate active mechanisms at the cellular level and thus benefit the development of anticancer therapies.
AuthorsChun-Tang Chiou, Wei-Chun Lee, Jiahn-Haur Liao, Jing-Jy Cheng, Lie-Chwen Lin, Chih-Yu Chen, Jen-Shin Song, Ming-Hsien Wu, Kak-Shan Shia, Wen-Tai Li
JournalEuropean journal of medicinal chemistry (Eur J Med Chem) Vol. 98 Pg. 1-12 (Jun 15 2015) ISSN: 1768-3254 [Electronic] France
PMID25988923 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2015 Elsevier Masson SAS. All rights reserved.
Chemical References
  • Acetamides
  • Antineoplastic Agents
  • Indoles
Topics
  • Acetamides (chemistry)
  • Animals
  • Antineoplastic Agents (chemical synthesis, chemistry, pharmacology)
  • Cell Line, Tumor
  • Drug Screening Assays, Antitumor
  • Humans
  • Indoles (chemical synthesis, chemistry, pharmacology)
  • Mice
  • Mice, Inbred BALB C
  • Models, Molecular
  • Xenograft Model Antitumor Assays

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: