HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Soluble VE-cadherin is involved in endothelial barrier breakdown in systemic inflammation and sepsis.

AbstractAIMS:
Microvascular endothelial barrier breakdown in sepsis precedes organ failure and death in patients. We tested the hypothesis that the formation of endothelium-derived soluble vascular endothelial (VE)-cadherin fragments (sVE-cadherin) is involved in inflammation-induced endothelial barrier disruption.
METHODS AND RESULTS:
Incubation of human dermal microvascular endothelial cells (HDMEC) with tumour necrosis factor-α (TNF-α) and bacterial lipopolysaccharide (LPS) led to endothelial barrier disruption which correlated with significantly increased sVE-cadherin at a size of ∼90 kDa in cell culture supernatants. Inhibition of the VE-cadherin-cleaving disintegrin and metalloproteinase ADAM10 using GI254023X attenuated inflammation-induced formation of sVE-cadherin and endothelial barrier disruption, suggesting ADAM10-mediated shedding as a mechanism underlying sVE-cadherin release. Formation of VE-cadherin fragments at 90 and 110 kDa was observed when recombinant VE-cadherin (rVE-cadherin) was digested with recombinant ADAM10. Mass spectrometry of the VE-cadherin fragments showed that they originated from cleavage of the extracelluar domain and thereby several cleavage sites of ADAM10 were identified. Atomic force microscopy measurements demonstrated that cell culture supernatants containing sVE-cadherin and application of rVE-cadherin blocked VE-cadherin binding. Accordingly rVE-cadherin dose-dependently led to loss of endothelial barrier functions in HDMEC monolayers. Finally, in patients suffering from severe sepsis or septic shock with clinical signs of a microvascular leackage, serum levels of sVE-cadherin were significantly increased.
CONCLUSION:
Taken together, formation of sVE-cadherin is associated and contributes to inflammation-induced breakdown of endothelial barrier functions by inhibition of VE-cadherin binding. The underlying mechanism of VE-cadherin cleavage involves ADAM10 and appears to be of clinical relevance since sVE-cadherin was augmented in patients with severe sepsis.
AuthorsSven Flemming, Natalie Burkard, Melanie Renschler, Franziska Vielmuth, Michael Meir, Martin Alexander Schick, Christian Wunder, Christoph-Thomas Germer, Volker Spindler, Jens Waschke, Nicolas Schlegel
JournalCardiovascular research (Cardiovasc Res) Vol. 107 Issue 1 Pg. 32-44 (Jul 01 2015) ISSN: 1755-3245 [Electronic] England
PMID25975259 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightPublished on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: [email protected].
Chemical References
  • 3-(formylhydroxyamino)-2-(3-phenyl-1-propyl)butanoic acid (2,2-dimethyl-1-methylcarbamoyl-1-propyl)amide
  • Antigens, CD
  • Cadherins
  • Dipeptides
  • Hydroxamic Acids
  • Membrane Proteins
  • Phosphodiesterase 4 Inhibitors
  • Tumor Necrosis Factor-alpha
  • cadherin 5
  • Amyloid Precursor Protein Secretases
  • ADAM Proteins
  • ADAM10 Protein
  • ADAM10 protein, human
Topics
  • ADAM Proteins (antagonists & inhibitors, physiology)
  • ADAM10 Protein
  • Aged
  • Amyloid Precursor Protein Secretases (antagonists & inhibitors, physiology)
  • Antigens, CD (analysis, physiology)
  • Cadherins (analysis, physiology)
  • Cells, Cultured
  • Dipeptides (pharmacology)
  • Endothelial Cells (physiology)
  • Enzyme-Linked Immunosorbent Assay
  • Female
  • Humans
  • Hydroxamic Acids (pharmacology)
  • Inflammation (physiopathology)
  • Male
  • Membrane Proteins (antagonists & inhibitors, physiology)
  • Middle Aged
  • Permeability
  • Phosphodiesterase 4 Inhibitors (pharmacology)
  • Sepsis (physiopathology)
  • Tumor Necrosis Factor-alpha (pharmacology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: