HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Dosimetry of [(177)Lu]-DO3A-VS-Cys(40)-Exendin-4 - impact on the feasibility of insulinoma internal radiotherapy.

Abstract
[(68)Ga]-DO3A-VS-Cys(40)-Exendin-4 has been shown to be a promising imaging candidate for targeting glucagon like peptide-1 receptor (GLP-1R). In the light of radiotheranostics and personalized medicine the (177)Lu-labelled analogue is of paramount interest. In this study we have investigated the organ distribution of [(177)Lu]-DO3A-VS-Cys(40)-Exendin-4 in rat and calculated human dosimetry parameters in order to estimate the maximal acceptable administered radioactivity, and thus potential applicability of [(177)Lu]-DO3A-VS-Cys(40)-Exendin-4 for internal radiotherapy of insulinomas. Nine male and nine female Lewis rats were injected with [(177)Lu]-DO3A-VS-Cys(40)-Exendin-4 for ex vivo organ distribution study at nine time points. The estimation of human organ/total body absorbed and total effective doses was performed using Organ Level Internal Dose Assessment Code software (OLINDA/EXM 1.1). Six more rats (male: n = 3; female: n = 3) were scanned by single photon emission tomography and computed tomography (SPECT-CT). The renal function and potential cell dysfunction were monitored by creatinine ISTAT and glucose levels. The fine uptake structure of kidney and pancreas was investigated by ex vivo autoradiography. Blood clearance and washout from most of the organs was fast. The kidney was the dose-limiting organ with absorbed dose of 5.88 and 6.04 mGy/MBq, respectively for female and male. Pancreatic beta cells demonstrated radioactivity accumulation. Renal function and beta cell function remained unaffected by radiation. The absorbed dose of [(177)Lu]-DO3A-VS-Cys(40)-Exendin-4 to kidneys may limit the clinical application of the agent. However, hypothetically, kidney protection and peptidase inhibition may allow reduction of kidney absorbed dose and amplification of tumour absorbed doses.
AuthorsIrina Velikyan, Thomas N Bulenga, Ramkumar Selvaraju, Mark Lubberink, Daniel Espes, Ulrika Rosenström, Olof Eriksson
JournalAmerican journal of nuclear medicine and molecular imaging (Am J Nucl Med Mol Imaging) Vol. 5 Issue 2 Pg. 109-26 ( 2015) ISSN: 2160-8407 [Print] United States
PMID25973333 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: