HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

A relA-dependent regulatory cascade for auto-induction of microbisporicin production in Microbispora corallina.

Abstract
Microbisporicin is a potent type I lantibiotic produced by the rare actinomycete Microbispora corallina that is in preclinical trials for the treatment of infections caused by methicillin-resistant isolates of Staphylococcus aureus (MRSA). Analysis of the gene cluster for the biosynthesis of microbisporicin, which contains two unique post-translationally modified residues (5-chlorotryptophan and 3, 4-dihydroxyproline), has revealed an unusual regulatory mechanism that involves a pathway-specific extracytoplasmic function sigma factor (MibX)/anti-sigma factor (MibW) complex and an additional transcriptional regulator MibR. A model for the regulation of microbisporicin biosynthesis derived from transcriptional, mutational and quantitative reverse transcription polymerase chain reaction analyses suggests that MibR, which contains a C-terminal DNA-binding domain found in the LuxR family of transcriptional activators, functions as an essential master regulator to trigger microbisporicin production while MibX and MibW induce feed-forward biosynthesis and producer immunity. Moreover, we demonstrate that initial expression of mibR, and thus microbisporicin production, is dependent on the ppGpp synthetase gene (relA) of M. corallina. In addition, we show that constitutive expression of either of the two positively acting regulatory genes, mibR or mibX, leads to precocious and enhanced microbisporicin production.
AuthorsLorena T Fernández-Martínez, Juan P Gomez-Escribano, Mervyn J Bibb
JournalMolecular microbiology (Mol Microbiol) Vol. 97 Issue 3 Pg. 502-14 (Aug 2015) ISSN: 1365-2958 [Electronic] England
PMID25939852 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Copyright© 2015 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.
Chemical References
  • Bacteriocins
  • microbisporicin
  • Ligases
  • guanosine 3',5'-polyphosphate synthetases
Topics
  • Actinobacteria (genetics, metabolism)
  • Bacteriocins (biosynthesis)
  • Biosynthetic Pathways (genetics)
  • Gene Expression Regulation, Bacterial
  • Gene Regulatory Networks
  • Ligases (genetics, metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: