HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Mechanism of the Enzymatic Synthesis of 4-(Hydroxymethyl)-2- furancarboxaldehyde-phosphate (4-HFC-P) from Glyceraldehyde-3-phosphate Catalyzed by 4-HFC-P Synthase.

Abstract
A single enzyme, 4-(hydroxymethyl)-2-furancarboxaldehyde-phosphate synthase (MfnB), from the methanogen Methanocaldococcus jannaschii catalyzed at least 10 separate chemical reactions in converting two molecules of glyceraldehyde-3-P (GA-3-P) to 4-(hydroxymethyl)-2-furancarboxaldehyde-P (4-HFC-P), the first discrete intermediate in the biosynthetic pathway to the furan moiety of the coenzyme methanofuran. Here we describe the biochemical characterization of the recombinantly expressed MfnB to understand its catalytic mechanism. Site-directed mutagenesis showed that the strictly conserved residues (Asp25, Lys27, Lys85, and Asp151) around the active site are all essential for enzyme catalysis. Matrix-assisted laser desorption/ionization analysis of peptide fragments of MfnB incubated with GA-3-P followed by NaBH₄ reduction and trypsin digestion identified a peptide with a mass/charge ratio of 1668.8 m/z present only in the D25N, D151N, and K155R mutants, which is consistent with Lys27 having increased by a mass of 58 m/z, indicating that Lys27 forms a Schiff base with a methylglyoxal-like intermediate. In addition, incubation of MfnB with GA-3-P in the presence of deuterated water or incubation of MfnB with C-2 deuterated GA-3-P showed essentially no deuterium incorporated into the 4-HFC-P. Combined with structural analysis and molecular docking, we predict the potential binding sites for two GA-3P molecules in the active site. On the basis of our observations, a possible catalytic mechanism of MfnB is proposed in this study. A phosphate elimination reaction and a triose phosphate isomerase-like reaction occur at the GA-3-P binding site I and II, respectively, prior to the aldol condensation between the enzyme-bound enol form of methylglyoxal and dihydroxyacetone phosphate (DHAP), after which the catalytic cycle is completed by a cyclization and two dehydration reactions assisted by several general acids/bases at the same active site.
AuthorsYu Wang, Michael K Jones, Huimin Xu, W Keith Ray, Robert H White
JournalBiochemistry (Biochemistry) Vol. 54 Issue 19 Pg. 2997-3008 (May 19 2015) ISSN: 1520-4995 [Electronic] United States
PMID25905665 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.)
Chemical References
  • Glyceraldehyde 3-Phosphate
  • Dihydroxyacetone Phosphate
  • Pyruvaldehyde
  • Aldehyde-Lyases
Topics
  • Aldehyde-Lyases (metabolism)
  • Catalysis
  • Dihydroxyacetone Phosphate (metabolism)
  • Glyceraldehyde 3-Phosphate (metabolism)
  • Methanocaldococcus (metabolism)
  • Mutation
  • Pyruvaldehyde (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: