HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Cell type-dependent variation in paracrine potency determines therapeutic efficacy against neonatal hyperoxic lung injury.

AbstractBACKGROUND AIMS:
The aim of this study was to determine the optimal cell type for transplantation to protect against neonatal hyperoxic lung injury. To this end, the in vitro and in vivo therapeutic efficacies and paracrine potencies of human umbilical cord blood-derived mesenchymal stromal cells (HUMs), human adipose tissue-derived mesenchymal stromal cells (HAMs) and human umbilical cord blood mononuclear cells (HMNs) were compared.
METHODS:
Hyperoxic injury was induced in vitro in A549 cells by challenge with H2O2. Alternatively, hyperoxic injury was induced in newborn Sprague-Dawley rats in vivo by exposure to hyperoxia (90% oxygen) for 14 days. HUMs, HAMs or HMNs (5 × 10(5) cells) were given intratracheally at postnatal day 5.
RESULTS:
Hyperoxia-induced increases in in vitro cell death and in vivo impaired alveolarization were significantly attenuated in both the HUM and HAM groups but not in the HMN group. Hyperoxia impaired angiogenesis, increased the cell death and pulmonary macrophages and elevated inflammatory cytokine levels. These effects were significantly decreased in the HUM group but not in the HAM or HMN groups. The levels of human vascular endothelial growth factor and hepatocyte growth factor produced by donor cells were highest in HUM group, followed by HAM group and then HMN group.
CONCLUSIONS:
HUMs exhibited the best therapeutic efficacy and paracrine potency than HAMs or HMNs in protecting against neonatal hyperoxic lung injury. These cell type-dependent variations in therapeutic efficacy might be associated or mediated with the paracrine potency of the transplanted donor cells.
AuthorsSo Yoon Ahn, Yun Sil Chang, Dong Kyung Sung, Hye Soo Yoo, Se In Sung, Soo Jin Choi, Won Soon Park
JournalCytotherapy (Cytotherapy) Vol. 17 Issue 8 Pg. 1025-35 (Aug 2015) ISSN: 1477-2566 [Electronic] England
PMID25863963 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Chemical References
  • Cytokines
  • HGF protein, human
  • VEGFA protein, human
  • Vascular Endothelial Growth Factor A
  • Hepatocyte Growth Factor
  • Hydrogen Peroxide
  • Oxygen
Topics
  • Adipose Tissue (cytology)
  • Animals
  • Animals, Newborn
  • Apoptosis (physiology)
  • Bronchopulmonary Dysplasia (therapy)
  • Cell Line
  • Cytokines (metabolism)
  • Fetal Blood (cytology)
  • Hepatocyte Growth Factor (metabolism)
  • Humans
  • Hydrogen Peroxide (metabolism)
  • Hyperoxia (pathology, therapy)
  • Leukocytes, Mononuclear (cytology, transplantation)
  • Lung Injury (pathology, therapy)
  • Macrophages, Alveolar (immunology)
  • Mesenchymal Stem Cell Transplantation (methods)
  • Mesenchymal Stem Cells (cytology)
  • Neovascularization, Physiologic (physiology)
  • Oxygen (metabolism)
  • Rats
  • Rats, Sprague-Dawley
  • Trachea (cytology, metabolism)
  • Vascular Endothelial Growth Factor A (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: