HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

PTPRO-mediated autophagy prevents hepatosteatosis and tumorigenesis.

Abstract
Autophagy plays a critical role in the progression of nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC). Protein tyrosine phosphatase receptor type O (PTPRO) was recently identified as a tumor suppressor, but little is known about its role in NASH. Here, we investigated the role of PTPRO-dependent autophagy in insulin resistance, lipid metabolism, and hepatocarcinogenesis. Wild-type (WT) and ptpro-/- mice were fed a high-fat diet (HFD) for another 16 weeks after diethylnitrosamine (DEN) injection to induce NASH. Ptpro-/- mice exhibited severe liver injury, insulin resistance, hepatosteatosis and autophagy deficiency compared with WT littermates. PTPRO deletion also promoted the induction of lipogenic target genes and decreases in β-oxidation-related genes. Increased activation of AKT and accumulation of cytoplasmic p53 was detected in ptpro-/- mice, which in combination repressed autophagy. Intriguingly, hyperinsulinemia involving AKT activation was also exacerbated in HFD-fed mice due to PTPRO deletion. Activation of AKT induced stabilization of the MDMX/MDM2 heterocomplex, thus promoting p53 accumulation in the cytoplasm. Inhibition of AKT restored autophagy and p53 accumulation in hepatocytes, indicating that AKT acts upstream of p53. Due to hyperinsulinemia and autophagy deficiency, a HFD could aggravate steatohepatitis in ptpro-/- mice. Importantly, the expression of PTPRO was much decreased in human steatohepatitis, which was associated with increased p62 accumulation. Together, these data indicate that PTPRO regulates insulin and lipid metabolism via the PI3K/Akt/MDM4/MDM2/P53 axis by affecting autophagy.
AuthorsWenjie Zhang, Jiajie Hou, Xiaochen Wang, Runqiu Jiang, Yin Yin, Jie Ji, Lei Deng, Xingxu Huang, Ke Wang, Beicheng Sun
JournalOncotarget (Oncotarget) Vol. 6 Issue 11 Pg. 9420-33 (Apr 20 2015) ISSN: 1949-2553 [Electronic] United States
PMID25826083 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • PTPRO protein, human
  • Receptor-Like Protein Tyrosine Phosphatases, Class 3
Topics
  • Adult
  • Animals
  • Autophagy (genetics, physiology)
  • Carcinogenesis (genetics, pathology)
  • Carcinoma, Hepatocellular (genetics, pathology)
  • Fatty Liver (genetics, pathology, prevention & control)
  • Female
  • Hepatocytes (metabolism, pathology)
  • Humans
  • Insulin Resistance (genetics)
  • Lipid Metabolism (genetics)
  • Liver Neoplasms (genetics, pathology)
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Middle Aged
  • Receptor-Like Protein Tyrosine Phosphatases, Class 3 (genetics, physiology)
  • Signal Transduction (genetics)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: