HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Epigenetic pattern changes in prenatal female Sprague-Dawley rats following exposure to androgen.

Abstract
Androgen excess is generally considered to be one of the major characteristics of polycystic ovary syndrome (PCOS). Evidence from both clinical research and animal studies has revealed that this syndrome may have fetal origins, with epigenetics being proposed as the underlying mechanism. Our PCOS rat model induced by prenatal administration of 3mg testosterone from Embryonic Day (E) 16 to E19 showed polycystic ovaries, irregular oestrous cycles and endocrine disorders in adulthood. The methylation status of 16, 8 and 4 cytosine-phosphate-guanine (CpG) sites in the promoter regions of the androgen receptor (Ar), cytochrome P450 family 11, subfamily A, polypeptide 1 (Cyp11a1) and cytochrome P450, family 17, subfamily A, polypeptide 1 (Cyp17a1) genes, respectively, were measured by pyrosequencing. We identified three hypomethylated sites (CpG +58, +65 and +150) in Ar and one hypomethylated site (CpG +1016) in Cyp11a1 in peripheral blood cells of prenatally androgenised (PNA) rats. In ovarian tissue, five CpG sites of Ar (CpG +87, +91, +93, +98, +150) and one single CpG site in Cyp11a1 (CpG +953) were significantly hypomethylated in PNA rats, but the modified methylation of these two genes may not be sufficient to significantly alter levels of gene expression. Furthermore, tissue-specific methylation analysis revealed that both Ar and Cyp11a1 exhibited significant hypomethylation in testis in contrast with ovary and blood. PNA may lead to methylation pattern changes and the development of PCOS, but further studies are required to reveal causal relationships.
AuthorsYanjie Xia, Shanmei Shen, Xinlin Zhang, Zhantao Deng, Zou Xiang, Hongwei Wang, Long Yi, Qian Gao, Yong Wang
JournalReproduction, fertility, and development (Reprod Fertil Dev) (Mar 31 2015) ISSN: 1448-5990 [Electronic] Australia
PMID25823942 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: