HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Disruption of collagen homeostasis can reverse established age-related myocardial fibrosis.

Abstract
Heart failure, the leading cause of hospitalization of elderly patients, is correlated with myocardial fibrosis (ie, deposition of excess extracellular matrix proteins such as collagen). A key regulator of collagen homeostasis is lysyl oxidase (LOX), an enzyme responsible for cross-linking collagen fibers. Our objective was to ameliorate age-related myocardial fibrosis by disrupting collagen cross-linking through inhibition of LOX. The nonreversible LOX inhibitor β-aminopropionitrile (BAPN) was administered by osmotic minipump to 38-week-old C57BL/6J male mice for 2 weeks. Sirius Red staining of myocardial cross sections revealed a reduction in fibrosis, compared with age-matched controls (5.84 ± 0.30% versus 10.17 ± 1.34%) (P < 0.05), to a level similar to that of young mice at 8 weeks (4.9 ± 1.2%). BAPN significantly reduced COL1A1 mRNA, compared with age-matched mice (3.5 ± 0.3-fold versus 15.2 ± 4.9-fold) (P < 0.05), suggesting that LOX is involved in regulation of collagen synthesis. In accord, fibrotic factor mRNA expression was reduced after BAPN. There was also a novel increase in Ly6C expression by resident macrophages. By interrupting collagen cross-linking by LOX, the BAPN treatment reduced myocardial fibrosis. A novel observation is that BAPN treatment modulated the transforming growth factor-β pathway, collagen synthesis, and the resident macrophage population. This is especially valuable in terms of potential therapeutic targeting of collagen regulation and thereby age-related myocardial fibrosis.
AuthorsNicole L Rosin, Mryanda J Sopel, Alec Falkenham, Timothy D G Lee, Jean-Francois Légaré
JournalThe American journal of pathology (Am J Pathol) Vol. 185 Issue 3 Pg. 631-42 (Mar 2015) ISSN: 1525-2191 [Electronic] United States
PMID25701883 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Chemical References
  • Aminopropionitrile
  • Collagen
Topics
  • Age Factors
  • Aminopropionitrile (pharmacology, therapeutic use)
  • Animals
  • Collagen (metabolism)
  • Fibrosis (metabolism, pathology)
  • Heart (drug effects)
  • Heart Diseases (drug therapy, metabolism, pathology)
  • Male
  • Mice
  • Myocardium (metabolism, pathology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: