Proinflammatory effects of arachidonic acid in a lipopolysaccharide-induced inflammatory microenvironment in 3T3-L1 adipocytes in vitro.

Long-chain n-3 polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA), have known anti-inflammatory effects, including the modulation of adipose tissue-derived inflammatory mediators (i.e., adipokines) implicated in obesity-related pathologies, such as insulin resistance. Less is known about the effects of plant-derived n-3 PUFA, α-linolenic acid (ALA, 18:3n-3) and stearidonic acid (SDA 18:4n-3), or n-6 PUFA linoleic acid (LA, 18:2n-6) and arachidonic acid (AA, 20:4n-6), especially in combination with an inflammatory stimulus, such as lipopolysaccharide (LPS), at a dose intended to mimic obesity-associated low-grade inflammation. To study this, 3T3-L1 adipocytes were incubated with 100 μmol/L of various n-3 or n-6 PUFA with or without 10 ng/mL LPS for up to 24 h. AA in the presence of LPS synergistically increased (p < 0.05) pro-inflammatory monocyte chemoattractant protein-1 (MCP)-1 and interleukin (IL)-6 secretion and gene expression, as well as COX-2 and TLR2 gene expression at 6 and/or 24 h, suggesting their potential roles in the synergistic effects of AA and LPS. Plant-derived fatty acids ALA, SDA, and LA did not differentially affect adipokine gene expression or secretion, whereas LPS-induced pro-inflammatory IL-1β expression and MCP-1 secretion was decreased (p < 0.05) by EPA, DHA, and/or EPA+DHA (50 μmol/L each) compared with LPS alone. Only DHA increased (p < 0.05) gene expression of the n-3 PUFA receptor GPR120 and simultaneously decreased LPS-induced nuclear factor-κB activation compared with control. Our findings emphasize that specific fatty acids within the n-3 or n-6 PUFA class warrant consideration in the development of nutritional strategies to improve obesity-associated inflammation.
AuthorsMary M Cranmer-Byng, Danyelle M Liddle, Anna A De Boer, Jennifer M Monk, Lindsay E Robinson
JournalApplied physiology, nutrition, and metabolism = Physiologie appliquée, nutrition et métabolisme (Appl Physiol Nutr Metab) Vol. 40 Issue 2 Pg. 142-54 (Feb 2015) ISSN: 1715-5320 [Electronic] Canada
PMID25641170 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research network!

Choose Username:
Verify Password: