HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Changes in chemical coding of sympathetic chain ganglia (SChG) neurons supplying porcine urinary bladder after botulinum toxin (BTX) treatment.

Abstract
Botulinum toxin (BTX) is a neurotoxin used in medicine as an effective drug in experimental therapy of neurogenic urinary bladder disorders. We have investigated the influence of BTX on the chemical coding of sympathetic chain ganglia (SChG) neurons supplying the porcine urinary bladder. The toxin was injected into the wall of the bladder. SChG neurons were visualized by a retrograde tracing method with fluorescent tracer fast blue (FB) and their chemical coding was investigated by double-labelling immunohistochemistry with antibodies against dopamine β-hydroxylase (DβH; a marker of noradrenergic neurons), neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP), somatostatin (SOM), galanin (GAL), Leu(5)-enkephalin (L-ENK) and neuronal nitric oxide synthase (nNOS). In both the control (n = 5) and BTX-treated pigs (n = 5), the vast majority (91 ± 2.3 % and 89.8 ± 2.5 %, respectively) of FB-positive (FB+) nerve cells were DβH+. BTX injections caused a decrease in the number of FB+/DβH+ neurons that were immunopositive to NPY (39.5 ± 4.5 % vs 74.5 ± 11.9 %), VIP (8.9 ± 5.3 % vs 22.3 ± 8.8 %), SOM (5.8 ± 2.3 % vs 17.4 ± 3.7 %) or GAL (0.9 ± 1.2 % vs 5.4 ± 4.4 %) and a distinct increase in the number of FB+/DβH+ neurons that were immunoreactive to L-ENK (3.7 ± 2.9 % vs 1.1 % ± 0.8 %) or nNOS (7.7 ± 3.5 % vs 0.8 ± 0.6 %). Our study provides novel evidence that the therapeutic effects of BTX on the mammalian urinary bladder are partly mediated by SChG neurons.
AuthorsE Lepiarczyk, A Bossowska, M Majewski
JournalCell and tissue research (Cell Tissue Res) Vol. 360 Issue 2 Pg. 263-72 (May 2015) ISSN: 1432-0878 [Electronic] Germany
PMID25620409 (Publication Type: Journal Article)
Chemical References
  • Nerve Tissue Proteins
  • Botulinum Toxins
Topics
  • Animals
  • Botulinum Toxins (pharmacology)
  • Female
  • Ganglia, Sympathetic (metabolism)
  • Nerve Tissue Proteins (metabolism)
  • Neurons (metabolism)
  • Swine
  • Urinary Bladder (innervation, metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: