HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Quantification of plant surface metabolites by matrix-assisted laser desorption-ionization mass spectrometry imaging: glucosinolates on Arabidopsis thaliana leaves.

Abstract
The localization of metabolites on plant surfaces has been problematic because of the limitations of current methodologies. Attempts to localize glucosinolates, the sulfur-rich defense compounds of the order Brassicales, on leaf surfaces have given many contradictory results depending on the method employed. Here we developed a matrix-assisted laser desorption-ionization (MALDI) mass spectrometry protocol to detect surface glucosinolates on Arabidopsis thaliana leaves by applying the MALDI matrix through sublimation. Quantification was accomplished by spotting glucosinolate standards directly on the leaf surface. The A. thaliana leaf surface was found to contain approximately 15 nmol of total glucosinolate per leaf with about 50 pmol mm(-2) on abaxial (bottom) surfaces and 15-30 times less on adaxial (top) surfaces. Of the major compounds detected, 4-methylsulfinylbutylglucosinolate, indol-3-ylmethylglucosinolate, and 8-methylsulfinyloctylglucosinolate were also major components of the leaf interior, but the second most abundant glucosinolate on the surface, 4-methylthiobutylglucosinolate, was only a trace component of the interior. Distribution on the surface was relatively uniform in contrast to the interior, where glucosinolates were distributed more abundantly in the midrib and periphery than the rest of the leaf. These results were confirmed by two other mass spectrometry-based techniques, laser ablation electrospray ionization and liquid extraction surface analysis. The concentrations of glucosinolates on A. thaliana leaf surfaces were found to be sufficient to attract the specialist feeding lepidopterans Plutella xylostella and Pieris rapae for oviposition. The methods employed here should be easily applied to other plant species and metabolites.
AuthorsRohit Shroff, Katharina Schramm, Verena Jeschke, Peter Nemes, Akos Vertes, Jonathan Gershenzon, Aleš Svatoš
JournalThe Plant journal : for cell and molecular biology (Plant J) Vol. 81 Issue 6 Pg. 961-72 (Mar 2015) ISSN: 1365-313X [Electronic] England
PMID25600688 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.)
Copyright© 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
Chemical References
  • 4-methylthiobutylglucosinolate
  • Butyrates
  • Glucosinolates
  • Thioglucosides
Topics
  • Animals
  • Arabidopsis (metabolism)
  • Butterflies (physiology)
  • Butyrates (metabolism)
  • Female
  • Glucosinolates (metabolism)
  • Moths (physiology)
  • Oviposition
  • Plant Leaves (metabolism)
  • Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization (methods)
  • Thioglucosides (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: