HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Cytotoxicity of RNase Sa to the acute myeloid leukemia Kasumi-1 cells depends on the net charge.

Abstract
The majority of known cytotoxic RNases are basic proteins which destroy intracellular RNA. Cationization of RNases is considered to be an effective strategy for strengthening their antitumor properties. We constructed a set of RNase Sa variants consisting of charge reversal mutants, charge neutralization mutants, and variants with positively charged cluster at the N-terminus. All constructs retain a high level of catalytic activity and differ in net charge. Using acute myeloid leukemia cells Kasumi-1 we have shown that (i) cytotoxicity of RNase Sa mutants is linearly enhanced by cationization, (ii) the ability of cytotoxic mutants to induce cell death is caused by induction of apoptosis and (iii) localization of positive charge on N-terminus does not contribute to RNase Sa cytotoxicity. Capacity to induce apoptosis in malignant cells and the absence of necrotic effects make the RNase Sa mutants with high positive charge a suitable anti-cancer agent.
AuthorsVladimir A Mitkevich, Ksenia M Burnysheva, Olga N Ilinskaya, C Nick Pace, Alexander A Makarov
JournalOncoscience (Oncoscience) Vol. 1 Issue 11 Pg. 738-44 ( 2014) ISSN: 2331-4737 [Print] United States
PMID25594000 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: