HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Lysostaphin-coated titan-implants preventing localized osteitis by Staphylococcus aureus in a mouse model.

Abstract
The increasing incidence of implant-associated infections induced by Staphylococcus aureus (SA) in combination with growing resistance to conventional antibiotics requires novel therapeutic strategies. In the current study we present the first application of the biofilm-penetrating antimicrobial peptide lysostaphin in the context of bone infections. In a standardized implant-associated bone infection model in mice beta-irradiated lysostaphin-coated titanium plates were compared with uncoated plates. Coating of the implant was established with a poly(D,L)-lactide matrix (PDLLA) comprising lysostaphin formulated in a stabilizing and protecting solution (SPS). All mice were osteotomized and infected with a defined count of SA. Fractures were fixed with lysostaphin-coated locking plates. Plates uncoated or PDLLA-coated served as controls. All mice underwent debridement and lavage on Days 7, 14, 28 to determine the bacterial load and local immune reaction. Fracture healing was quantified by conventional radiography. On Day 7 bacterial growth in the lavages of mice with lysostaphin-coated plates showed a significantly lower count to the control groups. Moreover, in the lysostaphin-coated plate groups complete fracture healing were observed on Day 28. The fracture consolidation was accompanied by a diminished local immune reaction. However, control groups developed an osteitis with lysis or destruction of the bone and an evident local immune response. The presented approach of terminally sterilized lysostaphin-coated implants appears to be a promising therapeutic approach for low grade infection or as prophylactic strategy in high risk fracture care e.g. after severe open fractures.
AuthorsCeylan D Windolf, Tim Lögters, Martin Scholz, Joachim Windolf, Sascha Flohé
JournalPloS one (PLoS One) Vol. 9 Issue 12 Pg. e115940 ( 2014) ISSN: 1932-6203 [Electronic] United States
PMID25536060 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Anti-Infective Agents, Local
  • Coated Materials, Biocompatible
  • Interleukin-6
  • Polyesters
  • poly(lactide)
  • Titanium
  • Lysostaphin
Topics
  • Animals
  • Anti-Infective Agents, Local (administration & dosage, therapeutic use)
  • Bone Plates (adverse effects)
  • Coated Materials, Biocompatible (chemistry)
  • Female
  • Fracture Healing (drug effects)
  • Interleukin-6 (immunology)
  • Lysostaphin (administration & dosage, therapeutic use)
  • Mice
  • Mice, Inbred BALB C
  • Osteitis (etiology, immunology, microbiology, prevention & control)
  • Polyesters (chemistry)
  • Staphylococcal Infections (etiology, immunology, microbiology, prevention & control)
  • Staphylococcus aureus (drug effects)
  • Titanium (chemistry)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: