HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Effects of pubertal cannabinoid administration on attentional set-shifting and dopaminergic hyper-responsivity in a developmental disruption model of schizophrenia.

AbstractBACKGROUND:
Adolescent exposure to cannabinoids in vulnerable individuals is proposed to be a risk factor for psychiatric conditions later in life, particularly schizophrenia. Evidence from studies in animals has indicated that a combination of repeated pubertal cannabinoid administration with either neonatal prefrontocortical lesion, isolation rearing, or chronic NMDA receptor antagonism administration induces enhanced schizophrenia-like behavioral disruptions. The effects of adolescent exposure to CB1 receptor agonists, however, have not been tested in a developmental disruption model of schizophrenia.
METHODS:
This was tested in the methylazoxymethanol (MAM) model, in which repeated treatment with the synthetic cannabinoid agonist WIN 55,212-2 (WIN; 1.2mg/kg) was extended over 25 days throughout puberty (postnatal days 40-65) in control and MAM rats. The rats received 20 injections, which were delivered irregularly to mimic the human condition. Adult rats were tested for attentional set-shifting task and locomotor response to amphetamine, which was compared with in vivo recording from ventral tegmental area (VTA) dopamine (DA) neurons.
RESULTS:
MAM-treated rats showed impairment in the attentional set-shifting task, augmented locomotor response to amphetamine administration, and an increased number of spontaneously active DA neurons in the VTA. Interestingly, pubertal WIN treatment in normal animals induced similar changes at adulthood as those observed in MAM-treated rats, supporting the notion that adolescence exposure to cannabinoids may represent a risk factor for developing schizophrenia-like signs at adulthood. However, contrary to expectations, pubertal WIN administration did not exacerbate the behavioral and electrophysiological changes in MAM-treated rats beyond that observed in WIN-treated saline rats (Sal). Indeed, WIN treatment actually attenuated the locomotor response to amphetamine in MAM rats without impacting DA neuron activity states.
CONCLUSIONS:
Taken together, the present results indicate that the impact of cannabinoids during puberty/adolescence on schizophrenia models is more complex than may be predicted.
AuthorsFelipe V Gomes, Francisco S Guimarães, Anthony A Grace
JournalThe international journal of neuropsychopharmacology (Int J Neuropsychopharmacol) Vol. 18 Issue 2 (Dec 13 2014) ISSN: 1469-5111 [Electronic] England
PMID25522381 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Copyright© The Author 2015. Published by Oxford University Press on behalf of CINP.
Chemical References
  • Benzoxazines
  • Cannabinoids
  • Central Nervous System Stimulants
  • Morpholines
  • Naphthalenes
  • Methylazoxymethanol Acetate
  • (3R)-((2,3-dihydro-5-methyl-3-((4-morpholinyl)methyl)pyrrolo-(1,2,3-de)-1,4-benzoxazin-6-yl)(1-naphthalenyl))methanone
  • Amphetamine
  • methylazoxymethanol
Topics
  • Amphetamine (pharmacology)
  • Animals
  • Attention (drug effects, physiology)
  • Benzoxazines (pharmacology)
  • Cannabinoids (pharmacology)
  • Central Nervous System Stimulants (pharmacology)
  • Disease Models, Animal
  • Dopaminergic Neurons (drug effects, physiology)
  • Executive Function (drug effects, physiology)
  • Female
  • Male
  • Methylazoxymethanol Acetate (analogs & derivatives)
  • Morpholines (pharmacology)
  • Motor Activity (drug effects, physiology)
  • Naphthalenes (pharmacology)
  • Neuropsychological Tests
  • Pregnancy
  • Prenatal Exposure Delayed Effects
  • Rats, Sprague-Dawley
  • Schizophrenia (physiopathology)
  • Schizophrenic Psychology
  • Ventral Tegmental Area (drug effects, growth & development, physiopathology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: