HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Mechanism of in situ surface polymerization of gallic acid in an environmental-inspired preparation of carboxylated core-shell magnetite nanoparticles.

Abstract
Magnetite nanoparticles (MNPs) with biocompatible coatings are good candidates for MRI (magnetic resonance imaging) contrasting, magnetic hyperthermia treatments, and drug delivery systems. The spontaneous surface induced polymerization of dissolved organic matter on environmental mineral particles inspired us to prepare carboxylated core-shell MNPs by using a ubiquitous polyphenolic precursor. Through the adsorption and in situ surface polymerization of gallic acid (GA), a polygallate (PGA) coating is formed on the nanoparticles (PGA@MNP) with possible antioxidant capacity. The present work explores the mechanism of polymerization with the help of potentiometric acid-base titration, dynamic light scattering (for particle size and zeta potential determination), UV-vis (UV-visible light spectroscopy), FTIR-ATR (Fourier-transformed infrared spectroscopy by attenuated total reflection), and XPS (X-ray photoelectron spectroscopy) techniques. We observed the formation of ester and ether linkages between gallate monomers both in solution and in the adsorbed state. Higher polymers were formed in the course of several weeks both on the surface of nanoparticles and in the dispersion medium. The ratio of the absorbances of PGA supernatants at 400 and 600 nm (i.e., the E4/E6 ratio commonly used to characterize the degree of polymerization of humic materials) was determined to be 4.3, similar to that of humic acids. Combined XPS, dynamic light scattering, and FTIR-ATR results revealed that, prior to polymerization, the GA monomers became oxidized to poly(carboxylic acid)s due to ring opening while Fe(3+) ions reduced to Fe(2+). Our published results on the colloidal and chemical stability of PGA@MNPs are referenced thoroughly in the present work. Detailed studies on biocompatibility, antioxidant property, and biomedical applicability of the particles will be published.
AuthorsIldikó Y Tóth, Márta Szekeres, Rodica Turcu, Szilárd Sáringer, Erzsébet Illés, Dániel Nesztor, Etelka Tombácz
JournalLangmuir : the ACS journal of surfaces and colloids (Langmuir) Vol. 30 Issue 51 Pg. 15451-61 (Dec 30 2014) ISSN: 1520-5827 [Electronic] United States
PMID25517214 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Carboxylic Acids
  • Magnetite Nanoparticles
  • Minerals
  • Water
  • Gallic Acid
Topics
  • Adsorption
  • Biomimetics (methods)
  • Carboxylic Acids (chemistry)
  • Environment
  • Gallic Acid (chemistry)
  • Magnetite Nanoparticles (chemistry)
  • Minerals (chemistry)
  • Particle Size
  • Polymerization
  • Surface Properties
  • Water (chemistry)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: