HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Oxidative phosphorylated neurofilament protein M protects spinal cord against ischemia/reperfusion injury.

Abstract
Previous studies have shown that neurofilament protein M expression is upregulated in the early stage of spinal cord ischemia/reperfusion injury, indicating that this protein may play a role in the injury process. In the present study, we compared protein expression in spinal cord tissue of rabbits after 25 minutes of ischemia followed by 0, 12, 24, or 48 hours of reperfusion with that of sham operated rabbits, using proteomic two-dimensional gel electrophoresis and mass spectrometry. In addition, the nerve repair-related neurofilament protein M with the unregulated expression was detected with immunohistochemistry and western blot analysis. Two-dimensional gel electrophoresis and mass spectrometry showed that, compared with the sham group, upregulation of protein expression was most significant in the spinal cords of rabbits that had undergone ischemia and 24 hours of reperfusion. Immunohistochemical analysis revealed that neurofilament protein M was located in the membrane and cytoplasm of neuronal soma and axons at each time point after injury. Western blot analysis showed that neurofilament protein M expression increased with reperfusion time until it peaked at 24 hours and returned to baseline level after 48 hours. Furthermore, neurofilament protein M is phosphorylated under oxidative stress, and expression changes were parallel for the phosphorylated and non-phosphorylated forms. Neurofilament protein M plays an important role in spinal cord ischemia/reperfusion injury, and its functions are achieved through oxidative phosphorylation.
AuthorsHaitao Wang, Su Pan, Xiaoyu Yang, Benqing Zhu, Dalin Wang
JournalNeural regeneration research (Neural Regen Res) Vol. 9 Issue 18 Pg. 1672-7 (Sep 15 2014) ISSN: 1673-5374 [Print] India
PMID25374588 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: