HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Synthesis, characterization and biocompatibility of chitosan functionalized superparamagnetic nanoparticles for heat activated curing of cancer cells.

Abstract
Surface functionalization, colloidal stability and biocompatibility of magnetic nanoparticles are crucial for their biological applications. Here, we report a synthetic approach for the direct preparation of superparamagnetic nanoparticles consisting of a perovskite LSMO core modified with a covalently linked chitosan shell that provides colloidal stability in aqueous solutions for cancer hyperthermia therapy. The characterization of the core-shell nanostructure using Fourier transform infrared spectroscopy; thermo-gravimetric analysis to assess the chemical bonding of chitosan to nanoparticles; field-emission scanning electron microscopy and transmission electron microscopy for its size and coating efficiency estimation; and magnetic measurement for their magnetization properties was performed. Zeta potential and light scattering studies of the core shell revealed it to possess good colloidal stability. Confocal microscopy and MTT assay are performed for qualitative and quantitative measurement of cell viability and biocompatibility. In depth cell morphology and biocompatibility is evaluated by using multiple-staining of different dyes. The magnetic@chitosan nanostructure system is found to be biocompatible up to 48 h with 80% cell viability. Finally, an in vitro cancer hyperthermia study is done on the MCF7 cell line. During in vitro hyperthermia treatment of cancer cells, cell viability is reduced upto 40% within 120 min with chitosan coated nanoparticles. Our results demonstrate that this simplified and facile synthesis strategy shows potential for designing a colloidal stable state and biocompatible core shell nanostructures for cancer hyperthermia therapy.
AuthorsN D Thorat, S V Otari, R M Patil, R A Bohara, H M Yadav, V B Koli, A K Chaurasia, R S Ningthoujam
JournalDalton transactions (Cambridge, England : 2003) (Dalton Trans) Vol. 43 Issue 46 Pg. 17343-51 (Dec 14 2014) ISSN: 1477-9234 [Electronic] England
PMID25321385 (Publication Type: Journal Article)
Chemical References
  • Antineoplastic Agents
  • Biocompatible Materials
  • Chitosan
Topics
  • Antineoplastic Agents (chemical synthesis, chemistry)
  • Biocompatible Materials (chemistry)
  • Cell Survival
  • Chitosan (chemical synthesis, chemistry)
  • HeLa Cells
  • Hot Temperature
  • Humans
  • MCF-7 Cells
  • Magnetics
  • Microscopy, Electron, Transmission
  • Nanoparticles (chemistry)
  • Spectroscopy, Fourier Transform Infrared

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: