HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Rhodopsin management during the light-dark cycle of Anopheles gambiae mosquitoes.

Abstract
The tropical disease vector mosquito Anopheles gambiae possesses 11 rhodopsin genes. Three of these, GPROP1, GPROP3, and GPROP4, encode rhodopsins with >99% sequence identity. We created antisera against these rhodopsins and used immunohistology to show that one or more of these rhodopsins are expressed in the major R1-6 photoreceptor class of the adult A.gambiae eye. Under dark conditions, rhodopsin accumulates within the light-sensitive rhabdomere of the photoreceptor. Light treatment, however, causes extensive movement of rhodopsin to the cytoplasmic compartment. Protein electrophoresis showed that the rhodopsin is present in two different forms. The larger form is an immature species that is deglycosylated during the posttranslational maturation process to generate the smaller, mature form. The immature form is maintained at a constant level regardless of lighting conditions. These results indicate that rhodopsin biosynthesis and movement into the rhabdomere occurs at a constant rate. In contrast, the mature form increases in abundance when animals are placed in dark conditions. Light-triggered internalization and protein degradation counteracts this rhodopsin increase and keeps rhabdomeric rhodopsin levels low in light conditions. The interplay of the constant maturation rate with light-triggered degradation causes rhodopsin to accumulate within the rhabdomere only in dark conditions. Thus, Anopheles photoreceptors possess a mechanism for adjusting light sensitivity through light-dependent control of rhodopsin levels and cellular location.
AuthorsYoung Min Moon, Alexander J Metoxen, Matthew T Leming, Michelle A Whaley, Joseph E O'Tousa
JournalJournal of insect physiology (J Insect Physiol) Vol. 70 Pg. 88-93 (Nov 2014) ISSN: 1879-1611 [Electronic] England
PMID25260623 (Publication Type: Journal Article, Research Support, N.I.H., Extramural)
CopyrightCopyright © 2014 Elsevier Ltd. All rights reserved.
Chemical References
  • Rhodopsin
Topics
  • Animals
  • Anopheles (physiology)
  • Photoperiod
  • Photoreceptor Cells, Invertebrate (chemistry, physiology)
  • Rhodopsin (analysis, biosynthesis, physiology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: