HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Ultrasensitive detection of 3D cerebral microvascular network dynamics in vivo.

Abstract
Despite widespread applications of multiphoton microscopy in microcirculation, its small field of view and inability to instantaneously quantify cerebral blood flow velocity (CBFv) in vascular networks limit its utility in investigating the heterogeneous responses to brain stimulations. Optical Doppler tomography (ODT) provides 3D images of CBFv networks, but it suffers poor sensitivity for measuring capillary flows. Here we report on a new method, contrast-enhanced ODT with Intralipid that significantly improves quantitative CBFv imaging of capillary networks by obviating the errors from long latency between flowing red blood cells (low hematocrit ~20% in capillaries). This enhanced sensitivity allowed us to measure the ultraslow microcirculation surrounding a brain tumor and the abnormal ingrowth of capillary flows in the tumor as well as in ischemia triggered by chronic cocaine in the mouse brain that could not be detected by regular ODT. It also enabled significantly enhanced sensitivity for quantifying the heterogeneous CBFv responses of vascular networks to acute cocaine exposure. Inasmuch as lipid emulsions are widely used for parenteral nutrition the Intralipid contrast method has translational potential for clinical applications.
AuthorsYingtian Pan, Jiang You, Nora D Volkow, Kicheon Park, Congwu Du
JournalNeuroImage (Neuroimage) Vol. 103 Pg. 492-501 (Dec 2014) ISSN: 1095-9572 [Electronic] United States
PMID25192654 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, N.I.H., Intramural)
CopyrightPublished by Elsevier Inc.
Chemical References
  • Emulsions
  • Phospholipids
  • soybean oil, phospholipid emulsion
  • Soybean Oil
Topics
  • Animals
  • Brain (blood supply)
  • Brain Ischemia (physiopathology)
  • Brain Neoplasms (blood supply)
  • Cerebrovascular Circulation (physiology)
  • Emulsions
  • Female
  • Imaging, Three-Dimensional (methods)
  • Magnetic Resonance Imaging
  • Mice
  • Microvessels (ultrastructure)
  • Phospholipids
  • Soybean Oil
  • Tomography, Optical Coherence (methods)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: