HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Decoration of size-tunable CuO nanodots on TiO2 nanocrystals for noble metal-free photocatalytic H2 production.

Abstract
We report a simple yet effective approach for the decoration of the TiO2 nanocrystal surface with size-tunable CuO nanodots for high-performance noble metal-free photocatalytic H2 production. Modification with polyacrylic acid enables the surface of TiO2 nanocrystals to be selectively deposited with Cu(OH)2 nanodots, which can be subsequently converted to CuO through dehydration without changing their morphologies. UV irradiation of the nanocomposite solution in the presence of a hole scavenger produces photogenerated electrons which reduce CuO to metallic Cu nanodots, making them effective co-catalysts in a role similar to Pt for promoting photocatalytic H2 production. Due to the considerably high work function of Cu, the formation of a metal-semiconductor Schottky junction induces efficient charge separation and transfer. As a result, the TiO2 nanocrystals decorated with an optimal amount of CuO nanodots (1.7 wt%) could reach ∼50% of the photocatalytic activity achievable by the Pt-TiO2 counterparts (1 wt%), clearly demonstrating the great potential of such composite catalysts for efficient noble metal-free photocatalytic H2 production.
AuthorsGeon Dae Moon, Ji Bong Joo, Ilkeun Lee, Yadong Yin
JournalNanoscale (Nanoscale) Vol. 6 Issue 20 Pg. 12002-8 (Oct 21 2014) ISSN: 2040-3372 [Electronic] England
PMID25177805 (Publication Type: Journal Article, Research Support, U.S. Gov't, Non-P.H.S.)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: