HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Overproduction of Ristomycin A by activation of a silent gene cluster in Amycolatopsis japonicum MG417-CF17.

Abstract
The emergence of antibiotic-resistant pathogenic bacteria within the last decades is one reason for the urgent need for new antibacterial agents. A strategy to discover new anti-infective compounds is the evaluation of the genetic capacity of secondary metabolite producers and the activation of cryptic gene clusters (genome mining). One genus known for its potential to synthesize medically important products is Amycolatopsis. However, Amycolatopsis japonicum does not produce an antibiotic under standard laboratory conditions. In contrast to most Amycolatopsis strains, A. japonicum is genetically tractable with different methods. In order to activate a possible silent glycopeptide cluster, we introduced a gene encoding the transcriptional activator of balhimycin biosynthesis, the bbr gene from Amycolatopsis balhimycina (bbrAba), into A. japonicum. This resulted in the production of an antibiotically active compound. Following whole-genome sequencing of A. japonicum, 29 cryptic gene clusters were identified by genome mining. One of these gene clusters is a putative glycopeptide biosynthesis gene cluster. Using bioinformatic tools, ristomycin (syn. ristocetin), a type III glycopeptide, which has antibacterial activity and which is used for the diagnosis of von Willebrand disease and Bernard-Soulier syndrome, was deduced as a possible product of the gene cluster. Chemical analyses by high-performance liquid chromatography and mass spectrometry (HPLC-MS), tandem mass spectrometry (MS/MS), and nuclear magnetic resonance (NMR) spectroscopy confirmed the in silico prediction that the recombinant A. japonicum/pRM4-bbrAba synthesizes ristomycin A.
AuthorsMarius Spohn, Norbert Kirchner, Andreas Kulik, Angelika Jochim, Felix Wolf, Patrick Muenzer, Oliver Borst, Harald Gross, Wolfgang Wohlleben, Evi Stegmann
JournalAntimicrobial agents and chemotherapy (Antimicrob Agents Chemother) Vol. 58 Issue 10 Pg. 6185-96 (Oct 2014) ISSN: 1098-6596 [Electronic] United States
PMID25114137 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2014, American Society for Microbiology. All Rights Reserved.
Chemical References
  • Ristocetin
  • balhimycin
  • ristocetin A
  • Vancomycin
Topics
  • Actinomycetales (genetics, metabolism)
  • Chromatography, High Pressure Liquid
  • Magnetic Resonance Spectroscopy
  • Mass Spectrometry
  • Multigene Family (genetics)
  • Ristocetin (metabolism)
  • Vancomycin (analogs & derivatives, metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: