HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Redox heterogeneity of subsurface waters in the Mesoproterozoic ocean.

Abstract
A substantial body of evidence suggests that subsurface water masses in mid-Proterozoic marine basins were commonly anoxic, either euxinic (sulfidic) or ferruginous (free ferrous iron). To further document redox variations during this interval, a multiproxy geochemical and paleobiological investigation was conducted on the approximately 1000-m-thick Mesoproterozoic (Lower Riphean) Arlan Member of the Kaltasy Formation, central Russia. Iron speciation geochemistry, supported by organic geochemistry, redox-sensitive trace element abundances, and pyrite sulfur isotope values, indicates that basinal calcareous shales of the Arlan Member were deposited beneath an oxygenated water column, and consistent with this interpretation, eukaryotic microfossils are abundant in basinal facies. The Rhenium-Osmium (Re-Os) systematics of the Arlan shales yield depositional ages of 1414±40 and 1427±43 Ma for two horizons near the base of the succession, consistent with previously proposed correlations. The presence of free oxygen in a basinal environment adds an important end member to Proterozoic redox heterogeneity, requiring an explanation in light of previous data from time-equivalent basins. Very low total organic carbon contents in the Arlan Member are perhaps the key--oxic deep waters are more likely (under any level of atmospheric O2) in oligotrophic systems with low export production. Documentation of a full range of redox heterogeneity in subsurface waters and the existence of local redox controls indicate that no single stratigraphic section or basin can adequately capture both the mean redox profile of Proterozoic oceans and its variance at any given point in time.
AuthorsE A Sperling, A D Rooney, L Hays, V N Sergeev, N G Vorob'eva, N D Sergeeva, D Selby, D T Johnston, A H Knoll
JournalGeobiology (Geobiology) Vol. 12 Issue 5 Pg. 373-86 (Sep 2014) ISSN: 1472-4669 [Electronic] England
PMID24889419 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.)
Copyright© 2014 John Wiley & Sons Ltd.
Chemical References
  • Organic Chemicals
  • Sulfides
  • Sulfur Isotopes
  • Trace Elements
  • pyrite
  • Iron
Topics
  • Evolution, Planetary
  • Iron (analysis)
  • Organic Chemicals (analysis)
  • Oxidation-Reduction
  • Russia
  • Seawater (chemistry)
  • Sulfides (analysis)
  • Sulfur Isotopes (analysis)
  • Trace Elements (analysis)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: