HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Hypoxia enhances the antiglioma cytotoxicity of B10, a glycosylated derivative of betulinic acid.

Abstract
B10 is a glycosylated derivative of betulinic acid with promising activity against glioma cells. Lysosomal cell death pathways appear to be essential for its cytotoxicity. We investigated the influence of hypoxia, nutrient deprivation and current standard therapies on B10 cytotoxicity. The human glioma cell lines LN-308 and LNT-229 were exposed to B10 alone or together with irradiation, temozolomide, nutrient deprivation or hypoxia. Cell growth and viability were evaluated by crystal violet staining, clonogenicity assays, propidium iodide uptake and LDH release assays. Cell death was examined using an inhibitor of lysosomal acidification (bafilomycin A1), a cathepsin inhibitor (CA074-Me) and a short-hairpin RNA targeting cathepsin B. Hypoxia substantially enhanced B10-induced cell death. This effect was sensitive to bafilomycin A1 and thus dependent on hypoxia-induced lysosomal acidification. Cathepsin B appeared to mediate cell death because either the inhibitor CA074-Me or cathepsin B gene silencing rescued glioma cells from B10 toxicity under hypoxia. B10 is a novel antitumor agent with substantially enhanced cytotoxicity under hypoxia conferred by increased lysosomal cell death pathway activation. Given the importance of hypoxia for therapy resistance, malignant progression, and as a result of antiangiogenic therapies, B10 might be a promising strategy for hypoxic tumors like malignant glioma.
AuthorsSebastian Fischer, Michael W Ronellenfitsch, Anna-Luisa Thiepold, Patrick N Harter, Sebastian Reichert, Donat Kögel, Reinhard Paschke, Michel Mittelbronn, Michael Weller, Joachim P Steinbach, Simone Fulda, Oliver Bähr
JournalPloS one (PLoS One) Vol. 9 Issue 4 Pg. e94921 ( 2014) ISSN: 1932-6203 [Electronic] United States
PMID24743710 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Antineoplastic Agents, Alkylating
  • Antineoplastic Agents, Phytogenic
  • CA 074 methyl ester
  • Dipeptides
  • Macrolides
  • Neoplasm Proteins
  • Pentacyclic Triterpenes
  • Triterpenes
  • Dacarbazine
  • bafilomycin A1
  • CTSB protein, human
  • Cathepsin B
  • Temozolomide
  • Betulinic Acid
Topics
  • Antineoplastic Agents, Alkylating (pharmacology)
  • Antineoplastic Agents, Phytogenic (pharmacology)
  • Cathepsin B (antagonists & inhibitors, metabolism)
  • Cell Death (drug effects)
  • Cell Hypoxia (drug effects)
  • Cell Line, Tumor
  • Dacarbazine (analogs & derivatives, pharmacology)
  • Dipeptides (pharmacology)
  • Glioma (drug therapy, metabolism, pathology)
  • Humans
  • Macrolides (pharmacology)
  • Neoplasm Proteins (antagonists & inhibitors, metabolism)
  • Pentacyclic Triterpenes
  • Temozolomide
  • Triterpenes (pharmacology)
  • Betulinic Acid

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: