HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Equiatomic intermetallic compounds YTX (T = Ni, Ir; X = Si, Ge, Sn, Pb): a systematic study by ⁸⁹Y solid state NMR and ¹¹⁹Sn Mössbauer spectroscopy.

Abstract
The equiatomic TiNiSi type tetrelides YTX (space group Pnma) with T = Ni, Ir and X = Si, Ge, Sn, Pb were synthesized from the elements by arc-melting or via high-frequency-melting of the elements in sealed niobium ampoules. All samples were characterized by powder X-ray diffraction using the Guinier technique. The structures of YNiGe, YNiPb, YIrSi, YIrGe, and YIrSn were refined from single crystal X-ray diffractometer data. The YTX tetrelides are characterized by a three-dimensional [TX] network that consists of puckered T3X3 hexagons with T-X distances in the order of the sums of the covalent radii. YIrSi and YIrGe show a reverse occupancy of the T and X sites with respect to the remaining YTX compounds, which is most likely a size effect. Solid state NMR studies reveal the sensitivity of (89)Y Knight shifts to electronic structure details. A monotonic dependence on the tetrelide Pauling electronegativity is observed in addition. The stannides YTSn (T = Ni, Rh, Ir, Pt) were further characterized by (119)Sn Mössbauer spectroscopy. They show single signals that are subjected to quadrupole splitting. Comparison of the isomer shifts with the whole series of YTSn stannides gives no hint of obvious correlations as a consequence of the valence electron count but reveals a systematic decrease with atomic number within a given group.
AuthorsChristoph Höting, Hellmut Eckert, Frank Haarmann, Florian Winter, Rainer Pöttgen
JournalDalton transactions (Cambridge, England : 2003) (Dalton Trans) Vol. 43 Issue 21 Pg. 7860-7 (Jun 07 2014) ISSN: 1477-9234 [Electronic] England
PMID24718868 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: