HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Pegylation of biological molecules and potential benefits: pharmacological properties of certolizumab pegol.

Abstract
PEGylation of biological proteins, defined as the covalent conjugation of proteins with polyethylene glycol (PEG), leads to a number of biopharmaceutical improvements, including increased half-life, increased solubility and reduced aggregation, and reduced immunogenicity. Since their introduction in 1990, PEGylated proteins have significantly improved the management of various chronic diseases, including rheumatoid arthritis (RA) and Crohn's disease. Certolizumab pegol is the only PEGylated anti-tumour necrosis factor (TNF)-α agent. It is a PEGylated, humanised, antigen-binding fragment of an anti-TNF monoclonal antibody. Unlike other anti-TNF agents, it has no crystallisable fragment (Fc) domain. Because of its novel structure, certolizumab pegol may have a different mechanism of action to the other anti-TNF agents, and also has different pharmacodynamic properties, which could possibly translate to a different safety profile. Pharmacodynamic studies have shown that certolizumab pegol binds to TNF with a higher affinity than adalimumab and infliximab. Certolizumab pegol is also more potent at neutralising soluble TNF-mediated signalling than adalimumab and infliximab, and has similar or lesser potency to etanercept. Certolizumab pegol does not cause detrimental in vitro effects such as degranulation, loss of cell integrity, apoptosis, complement-dependent cytotoxicity and antibody-dependent cell-mediated cytotoxicity. Certolizumab pegol may also penetrate more effectively into inflamed arthritic tissue than other anti-TNF agents, and is not actively transported across the placenta during pregnancy. Pharmacokinetic studies in healthy volunteers demonstrated that single intravenous and subcutaneous doses of certolizumab pegol had predictable pharmacokinetics. The pharmacokinetics of certolizumab pegol in patients with RA and Crohn's disease were consistent with pharmacokinetics in healthy volunteers.
AuthorsGianfranco Pasut
JournalBioDrugs : clinical immunotherapeutics, biopharmaceuticals and gene therapy (BioDrugs) Vol. 28 Suppl 1 Pg. S15-23 (Apr 2014) ISSN: 1179-190X [Electronic] New Zealand
PMID24687235 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Review)
Chemical References
  • Antibodies, Monoclonal, Humanized
  • Antirheumatic Agents
  • Immunoglobulin Fab Fragments
  • Tumor Necrosis Factor-alpha
  • Polyethylene Glycols
  • Certolizumab Pegol
Topics
  • Animals
  • Antibodies, Monoclonal, Humanized (adverse effects, pharmacokinetics, therapeutic use)
  • Antirheumatic Agents (adverse effects, pharmacokinetics, therapeutic use)
  • Arthritis, Rheumatoid (drug therapy, metabolism)
  • Certolizumab Pegol
  • Chemistry, Pharmaceutical
  • Drug Interactions
  • Half-Life
  • Humans
  • Immunoglobulin Fab Fragments (adverse effects, therapeutic use)
  • Molecular Targeted Therapy (adverse effects)
  • Polyethylene Glycols (adverse effects, pharmacokinetics, therapeutic use)
  • Tumor Necrosis Factor-alpha (antagonists & inhibitors)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: