HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Synaptic and paracrine mechanisms at carotid body arterial chemoreceptors.

Abstract
Mammalian carotid bodies are the main peripheral arterial chemoreceptors, strategically located at the bifurcation of the common carotid artery. When stimulated these receptors initiate compensatory respiratory and cardiovascular reflexes to maintain homeostasis. Thus, in response to low oxygen (hypoxia) or increased CO2/H(+) (acid hypercapnia), chemoreceptor type I cells depolarize and release excitatory neurotransmitters, such as ATP, which stimulate postsynaptic P2X2/3 receptors on afferent nerve terminals. The afferent discharge is shaped by autocrine and paracrine mechanisms involving both excitatory and inhibitory neuromodulators such as adenosine, serotonin (5-HT), GABA and dopamine. Recent evidence suggests that paracrine activation of P2Y2 receptors on adjacent glia-like type II cells may help boost the ATP signal via the opening of pannexin-1 channels. The presence of an inhibitory efferent innervation, mediated by release of nitric oxide, provides additional control of the afferent discharge. The broad array of neuromodulators and their receptors appears to endow the carotid body with a remarkable plasticity, most apparent during natural and pathophysiological conditions associated with chronic sustained and intermittent hypoxia.
AuthorsColin A Nurse
JournalThe Journal of physiology (J Physiol) Vol. 592 Issue 16 Pg. 3419-26 (Aug 15 2014) ISSN: 1469-7793 [Electronic] England
PMID24665097 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Review)
Copyright© 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
Chemical References
  • Receptors, Purinergic P2X
  • Oxygen
Topics
  • Animals
  • Arteries (metabolism, physiology)
  • Carotid Body (cytology, metabolism, physiology)
  • Humans
  • Oxygen (metabolism)
  • Paracrine Communication
  • Receptors, Purinergic P2X (metabolism)
  • Synaptic Transmission

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: