HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Inherent instability of the retinitis pigmentosa P23H mutant opsin.

Abstract
The P23H opsin mutation is the most common cause of autosomal dominant retinitis pigmentosa. Even though the pathobiology of the resulting retinal degeneration has been characterized in several animal models, its complex molecular mechanism is not well understood. Here, we expressed P23H bovine rod opsin in the nervous system of Caenorhabditis elegans. Expression was low due to enhanced protein degradation. The mutant opsin was glycosylated, but the polysaccharide size differed from that of the normal protein. Although P23H opsin aggregated in the nervous system of C. elegans, the pharmacological chaperone 9-cis-retinal stabilized it during biogenesis, producing a variant of rhodopsin called P23H isorhodopsin. In vitro, P23H isorhodopsin folded correctly, formed the appropriate disulfide bond, could be photoactivated but with reduced sensitivity, and underwent Meta II decay at a rate similar to wild type isorhodopsin. In worm neurons, P23H isorhodopsin initiated phototransduction by coupling with the endogenous Gi/o signaling cascade that induced loss of locomotion. Using pharmacological interventions affecting protein synthesis and degradation, we showed that the chromophore could be incorporated either during or after mutant protein translation. However, regeneration of P23H isorhodopsin with chromophore was significantly slower than that of wild type isorhodopsin. This effect, combined with the inherent instability of P23H rhodopsin, could lead to the structural cellular changes and photoreceptor death found in autosomal dominant retinitis pigmentosa. These results also suggest that slow regeneration of P23H rhodopsin could prevent endogenous chromophore-mediated stabilization of rhodopsin in the retina.
AuthorsYuanyuan Chen, Beata Jastrzebska, Pengxiu Cao, Jianye Zhang, Benlian Wang, Wenyu Sun, Yiyuan Yuan, Zhaoyang Feng, Krzysztof Palczewski
JournalThe Journal of biological chemistry (J Biol Chem) Vol. 289 Issue 13 Pg. 9288-303 (Mar 28 2014) ISSN: 1083-351X [Electronic] United States
PMID24515108 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Chemical References
  • Disulfides
  • Mutant Proteins
  • Rod Opsins
Topics
  • Amino Acid Sequence
  • Animals
  • Animals, Genetically Modified
  • Caenorhabditis elegans (genetics)
  • Cattle
  • Cell Death
  • Disulfides (chemistry)
  • Light
  • Molecular Sequence Data
  • Mutant Proteins (chemistry, genetics, metabolism)
  • Mutation
  • Photoreceptor Cells (pathology)
  • Protein Stability
  • Retinitis Pigmentosa (genetics, metabolism, pathology)
  • Rod Opsins (chemistry, genetics, metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: