HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Chrysin alleviates acute doxorubicin cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis.

Abstract
Doxorubicin (DOX) is one of the most effective chemotherapeutic drugs; however, its incidence of cardiotoxicity compromises its therapeutic index. Chrysin, a natural flavone, possesses multiple biological activities, such as antioxidant, anti-inflammatory and anti-cancer. The present study was designed to investigate whether chrysin could protect against DOX-induced acute cardiotoxicity; and if so, unravel the molecular mechanisms of this protective effect. Chrysin was administered to male albino rats once daily for 12 consecutive days at doses of 25 and 50mg/kg orally. DOX (15 mg/kg; i.p.) was administered on day 12. Chrysin pretreatment significantly protected against DOX-induced myocardial damage which was characterized by conduction abnormalities, increased serum creatine kinase isoenzyme-MB (CK-MB), and lactate dehydrogenase (LDH) and myofibrillar disarrangement. As indicators of oxidative stress, DOX caused significant glutathione depletion, lipid peroxidation and reduction in activities of antioxidant enzymes; catalase (CAT) and superoxide dismutase (SOD). Chrysin pretreatment significantly attenuated DOX-induced oxidative injury. Additionally, DOX provoked inflammatory responses by increasing the expressions of nuclear factor kappa-B (NF-κB), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and the levels of tumor necrosis factor-alpha (TNF-α) and nitric oxide while chrysin pretreatment significantly inhibited these inflammatory responses. Furthermore, DOX induced apoptotic tissue damage by increasing Bax and cytochrome c expressions and caspase-3 activity while decreasing the expression of Bcl-2. Chrysin pretreatment significantly ameliorated these apoptotic actions of DOX. Collectively, these findings indicate that chrysin possesses a potent protective effect against DOX-induced acute cardiotoxicity via suppressing oxidative stress, inflammation and apoptotic tissue damage.
AuthorsEman M Mantawy, Wesam M El-Bakly, Ahmed Esmat, Amira M Badr, Ebtehal El-Demerdash
JournalEuropean journal of pharmacology (Eur J Pharmacol) Vol. 728 Pg. 107-18 (Apr 05 2014) ISSN: 1879-0712 [Electronic] Netherlands
PMID24509133 (Publication Type: Journal Article)
CopyrightCopyright © 2014 Elsevier B.V. All rights reserved.
Chemical References
  • Anti-Inflammatory Agents, Non-Steroidal
  • Antibiotics, Antineoplastic
  • Antioxidants
  • Biomarkers
  • Flavonoids
  • Tumor Necrosis Factor-alpha
  • Nitric Oxide
  • chrysin
  • Doxorubicin
Topics
  • Animals
  • Anti-Inflammatory Agents, Non-Steroidal (administration & dosage, metabolism, therapeutic use)
  • Antibiotics, Antineoplastic (adverse effects)
  • Antioxidants (metabolism)
  • Apoptosis (drug effects)
  • Biomarkers (analysis)
  • Cardiomyopathies (chemically induced, metabolism, pathology, prevention & control)
  • Doxorubicin (adverse effects)
  • Electrocardiography
  • Flavonoids (administration & dosage, therapeutic use)
  • Immunohistochemistry
  • Male
  • Nitric Oxide (immunology, metabolism)
  • Oxidative Stress (drug effects)
  • Rats
  • Tumor Necrosis Factor-alpha (immunology, metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: