HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

A Ser252Trp mutation in fibroblast growth factor receptor 2 (FGFR2) mimicking human Apert syndrome reveals an essential role for FGF signaling in the regulation of endochondral bone formation.

Abstract
A S252W mutation of fibroblast growth factor receptor 2 (FGFR2), which is responsible for nearly two-thirds of Apert syndrome (AS) cases, causes retarded development of the skeleton and skull malformation resulting from premature fusion of the craniofacial sutures. We utilized a Fgfr2(+/S252W) mouse (a knock-in mouse model mimicking human AS) to demonstrate decreased bone mass due to reduced trabecular bone volume, reduced bone mineral density, and shortened growth plates in the long bones. In vitro bone mesenchymal stem cells (BMSCs) culture studies revealed that the mutant mice showed reduced BMSC proliferation, a reduction in chondrogenic differentiation, and reduced mineralization. Our results suggest that these phenomena are caused by up-regulation of p38 and Erk1/2 phosphorylation. Treatment of cultured mutant bone rudiments with SB203580 or PD98059 resulted in partial rescue of the bone growth retardation. The p38 signaling pathway especially was found to be responsible for the retarded long bone development. Our data indicate that the S252W mutation in FGFR2 directly affects endochondral ossification, resulting in growth retardation of the long bone. We also show that the p38 and Erk1/2 signaling pathways partially mediate the effects of the S252W mutation of FGFR2 on long bone development.
AuthorsPeng Chen, Li Zhang, Tujun Weng, Shichang Zhang, Shijin Sun, Mingtao Chang, Yang Li, Bo Zhang, Lianyang Zhang
JournalPloS one (PLoS One) Vol. 9 Issue 1 Pg. e87311 ( 2014) ISSN: 1932-6203 [Electronic] United States
PMID24489893 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Flavonoids
  • Imidazoles
  • Pyridines
  • Receptor, Fibroblast Growth Factor, Type 2
  • SB 203580
  • 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one
Topics
  • Acrocephalosyndactylia (genetics, pathology)
  • Animals
  • Cell Differentiation (genetics)
  • Embryonic Development (genetics)
  • Flavonoids (pharmacology)
  • Gene Knock-In Techniques
  • Humans
  • Imidazoles (pharmacology)
  • Mesenchymal Stem Cells
  • Mice
  • Mice, Inbred C57BL
  • Mutation
  • Osteogenesis (genetics)
  • Phosphorylation
  • Pyridines (pharmacology)
  • Receptor, Fibroblast Growth Factor, Type 2 (genetics, metabolism, physiology)
  • Signal Transduction
  • Up-Regulation

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: