HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Neuroprotective effects of idebenone against pilocarpine-induced seizures: modulation of antioxidant status, DNA damage and Na(+), K (+)-ATPase activity in rat hippocampus.

Abstract
The current study investigated the neuroprotective activity of idebenone against pilocarpine-induced seizures and hippocampal injury in rats. Idebenone is a ubiquinone analog with antioxidant, and ATP replenishment effects. It is well tolerated and has low toxicity. Previous studies reported the protective effects of idebenone against neurodegenerative diseases such as Friedreich's ataxia and Alzheimer's disease. So far, the efficacy of idebenone in experimental models of seizures has not been tested. To achieve this aim, rats were randomly distributed into six groups. Two groups were treated with either normal saline (0.9 %, i.p., control group) or idebenone (200 mg/kg, i.p., Ideb200 group) for three successive days. Rats of the other four groups (P400, Ideb50 + P400, Ideb100 + P400, and Ideb200 + P400) received either saline or idebenone (50, 100, 200 mg/kg, i.p.) for 3 days, respectively followed by a single dose of pilocarpine (400 mg/kg, i.p.). All rats were observed for 6 h post pilocarpine injection. Latency to the first seizure, and percentages of seizures and survival were recorded. Surviving animals were sacrificed, and the hippocampal tissues were separated and used for the measurement of lipid peroxides, total nitrate/nitrite, glutathione and DNA fragmentation levels, in addition to catalase and Na(+), K(+)-ATPase activities. Results revealed that in a dose-dependent manner, idebenone (100, 200 mg/kg) prolonged the latency to the first seizure, elevated the percentage of survival and diminished the percentage of pilocapine-induced seizures in rats. Significant increases in lipid peroxides, total nitrate/nitrite, DNA fragmentation levels and catalase activity, in addition to a significant reduction in glutathione level and Na(+), K(+)-ATPase activity were observed in pilocarpine group. Pre-administration of idebenone (100, 200 mg/kg, i.p.) to pilocarpine-treated rats, significantly reduced lipid peroxides, total nitrate/nitrite, DNA fragmentation levels, and normalized catalase activity. Moreover, idebenone prevented pilocarpine-induced detrimental effects on brain hippocampal glutathione level, and Na(+), K(+)-ATPase enzyme activity in rats. Data obtained from the current investigation emphasized the critical role of oxidative stress in induction of seizures by pilocarpine and elucidated the prominent neuroprotective and antioxidant activities of idebenone in this model.
AuthorsMaha Ali Eissa Ahmed
JournalNeurochemical research (Neurochem Res) Vol. 39 Issue 2 Pg. 394-402 (Feb 2014) ISSN: 1573-6903 [Electronic] United States
PMID24414170 (Publication Type: Journal Article)
Chemical References
  • Antioxidants
  • Neuroprotective Agents
  • Pilocarpine
  • Ubiquinone
  • Malondialdehyde
  • Sodium-Potassium-Exchanging ATPase
  • Glutathione
  • idebenone
Topics
  • Animals
  • Antioxidants (metabolism)
  • DNA Damage
  • Glutathione (metabolism)
  • Hippocampus (drug effects, enzymology, metabolism)
  • Male
  • Malondialdehyde (metabolism)
  • Neuroprotective Agents (pharmacology)
  • Pilocarpine (toxicity)
  • Rats
  • Rats, Sprague-Dawley
  • Seizures (chemically induced, prevention & control)
  • Sodium-Potassium-Exchanging ATPase (metabolism)
  • Ubiquinone (analogs & derivatives, pharmacology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: