HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Species-related differences in the electrophoretic behavior of CP 29 and CP 26: An immunochemical analysis.

Abstract
The monomeric chlorophyll-protein complexes, CP 29 and CP 26 seen in the Camm and Green (1980) and Dunahay and Staehelin (1986) green gels do not always migrate in the order of the apparent molecular weight of their apoproteins as determined by denaturing gel electrophoresis. In barley and corn they do, but in spinach they do not. In addition, in some higher plant species these chlorophyll-protein complexes comigrate on green gels causing confusion in the literature. To remedy this situation and circumvent future confusion, we propose that the CP 29 and CP 26 complexes be named according to the relative molecular weight of their apoproteins on denaturing gels. Our proposal is supported by the results obtained from four antibodies used on Western blot samples of whole thylakoids, grana membranes, and PS II preparations from different plants. The higher molecular weight proteins (proposed CP 29's) react strongly to one set of antibodies, and the lower molecular weight proteins (proposed CP 26's) react strongly to a different set. In spinach, CP 26 antibodies react also with CP 29, but the extent of the cross-reactivity depends critically on the gel electrophoresis system used. Accordingly, a lack of antibody reactivity under certain conditions may not indicate two proteins are unrelated, just simply that a particular epitope is no longer accessible following gel electrophoresis with a particular buffer system.
AuthorsT G Falbel, L A Staehelin
JournalPhotosynthesis research (Photosynth Res) Vol. 34 Issue 2 Pg. 249-62 (Nov 1992) ISSN: 0166-8595 [Print] Netherlands
PMID24408776 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: