HOMEPRODUCTSSERVICESCOMPANYCONTACTFAQResearchDictionaryPharmaMobileSign Up FREE or Login

Toward the development of dual-targeted glyceraldehyde-3-phosphate dehydrogenase/trypanothione reductase inhibitors against Trypanosoma brucei and Trypanosoma cruzi.

Abstract
A significant improvement in the treatment of trypanosomiases has been achieved with the recent development of nifurtimox-eflornithine combination therapy (NECT). As an alternative to drug combinations and as a means to overcome most of the antitrypanosomatid drug discovery challenges, a multitarget drug design strategy has been envisaged. To begin testing this hypothesis, we designed and developed a series of quinone-coumarin hybrids against glyceraldehyde-3-phosphate dehydrogenase/trypanothione reductase (GAPDH/TR). These enzymes belong to metabolic pathways that are vital to Trypanosoma brucei and Trypanosoma cruzi, and have thus been considered promising drug targets. The synthesized molecules were characterized for their dual-target antitrypanosomal profile, both in enzyme assays and in in vitro parasite cultures. The merged derivative 2-{[3-(3-dimethylaminopropoxy)-2-oxo-2H-chromen-7-yl]oxy}anthracene-1,4-dione (10) showed an IC50 value of 5.4 μM against TbGAPDH and a concomitant Ki value of 2.32 μM against TcTR. Notably, 2-{4-[6-(2-dimethylaminoethoxy)-2-oxo-2H-chromen-3-yl]phenoxy}anthracene-1,4-dione (compound 6) displayed a remarkable EC50 value for T.brucei parasites (0.026 μM) combined with a very low cytotoxicity toward mammalian L6 cells (7.95 μM). This promising low toxicity of compound 6 might be at least partially due to the fact that it does not interfere with human glutathione reductase.
AuthorsFederica Belluti, Elisa Uliassi, Giacomo Veronesi, Christian Bergamini, Marcel Kaiser, Reto Brun, Angelo Viola, Romana Fato, Paul A M Michels, R Luise Krauth-Siegel, Andrea Cavalli, Maria Laura Bolognesi
JournalChemMedChem (ChemMedChem) Vol. 9 Issue 2 Pg. 371-82 (Feb 2014) ISSN: 1860-7187 [Electronic] Germany
PMID24403089 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chemical References
  • Anthracenes
  • Trypanocidal Agents
  • Glyceraldehyde-3-Phosphate Dehydrogenases
  • NADH, NADPH Oxidoreductases
  • trypanothione reductase
Topics
  • Animals
  • Anthracenes (chemistry, pharmacology)
  • Cell Line
  • Chagas Disease (drug therapy, enzymology)
  • Glyceraldehyde-3-Phosphate Dehydrogenases (antagonists & inhibitors, metabolism)
  • Humans
  • Models, Molecular
  • NADH, NADPH Oxidoreductases (antagonists & inhibitors, metabolism)
  • Trypanocidal Agents (chemistry, pharmacology)
  • Trypanosoma brucei brucei (drug effects, enzymology)
  • Trypanosoma cruzi (drug effects, enzymology)
  • Trypanosomiasis, African (drug therapy, enzymology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research network!


Choose Username:
Email:
Password:
Verify Password: