HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Synthesis of new potent agonistic analogs of growth hormone-releasing hormone (GHRH) and evaluation of their endocrine and cardiac activities.

Abstract
In view of the recent findings of stimulatory effects of GHRH analogs, JI-34, JI-36 and JI-38, on cardiomyocytes, pancreatic islets and wound healing, three series of new analogs of GHRH(1-29) have been synthesized and evaluated biologically in an endeavor to produce more potent compounds. "Agmatine analogs", MR-356 (N-Me-Tyr(1)-JI-38), MR-361(N-Me-Tyr(1), D-Ala(2)-JI-38) and MR-367(N-Me-Tyr(1), D-Ala(2), Asn(8)-JI-38), in which Dat in JI-38 is replaced by N-Me-Tyr(1), showed improved relative potencies on GH release upon subcutaneous administration in vivo and binding in vitro. Modification with N-Me-Tyr(1) and Arg(29)-NHCH3 as in MR-403 (N-Me-Tyr(1), D-Ala(2), Arg(29)-NHCH3-JI-38), MR-406 (N-Me-Tyr(1), Arg(29)-NHCH3-JI-38) and MR-409 (N-Me-Tyr(1), D-Ala(2), Asn(8), Arg(29)-NHCH3-JI-38), and MR-410 (N-Me-Tyr(1), D-Ala(2), Thr(8), Arg(29)-NHCH3-JI-38) resulted in dramatically increased endocrine activities. These appear to be the most potent GHRH agonistic analogs so far developed. Analogs with Apa(30)-NH2 such as MR-326 (N-Me-Tyr(1), D-Ala(2), Arg(29), Apa(30)-NH2-JI-38), and with Gab(30)-NH2, as MR-502 (D-Ala(2), 5F-Phe(6), Ser(28), Arg(29),Gab(30)-NH2-JI-38) also exhibited much higher potency than JI-38 upon i.v. administration. The relationship between the GH-releasing potency and the analog structure is discussed. Fourteen GHRH agonists with the highest endocrine potencies were subjected to cardiologic tests. MR-409 and MR-356 exhibited higher potency than JI-38 in activating myocardial repair in rats with induced myocardial infarction. As the previous class of analogs, exemplified by JI-38, had shown promising results in multiple fields including cardiology, diabetes and wound healing, our new, more potent, GHRH agonists should manifest additional efficacy for possible medical applications.
AuthorsRenzhi Cai, Andrew V Schally, Tengjiao Cui, Luca Szalontay, Gabor Halmos, Wei Sha, Magdolna Kovacs, Miklos Jaszberenyi, Jinlin He, Ferenc G Rick, Petra Popovics, Rosemeire Kanashiro-Takeuchi, Joshua M Hare, Norman L Block, Marta Zarandi
JournalPeptides (Peptides) Vol. 52 Pg. 104-12 (Feb 2014) ISSN: 1873-5169 [Electronic] United States
PMID24373935 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
CopyrightPublished by Elsevier Inc.
Chemical References
  • Peptides
  • Agmatine
  • Growth Hormone-Releasing Hormone
Topics
  • Agmatine
  • Animals
  • Endocrine System (metabolism)
  • Growth Hormone-Releasing Hormone (agonists, metabolism)
  • Peptides (chemical synthesis, chemistry, pharmacology)
  • Protein Structure, Secondary
  • Rats
  • Rats, Sprague-Dawley
  • Structure-Activity Relationship

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: