HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Epithelial injury and repair in airways diseases.

Abstract
Asthma is a common chronic disease characterized by variable respiratory distress with underlying airway inflammation and airflow obstruction. The incidence of asthma has risen inexorably over the past 50 years, suggesting that environmental factors are important in its etiology. All inhaled environmental stimuli interact with the lung at the respiratory epithelium, and it is a testament to the effectiveness of the airway innate defenses that the majority of inhaled substances are cleared without the need to elicit an inflammatory response. However, once this barrier is breached, effective communication with immune and inflammatory cells is required to protect the internal milieu of the lung. In asthma, the respiratory epithelium is known to be structurally and functionally abnormal. Structurally, the epithelium shows evidence of damage and has more mucus-producing cells than normal airways. Functionally, the airway epithelial barrier can be more permeable and more sensitive to oxidants and show a deficient innate immune response to respiratory virus infection compared with that in normal individuals. The potential of a susceptible epithelium and the underlying mesenchyme to create a microenvironment that enables deviation of immune and inflammatory responses to external stimuli may be crucial in the development and progression of asthma. In this review, we consider three important groups of environmental stimuli on the epithelium in asthma: oxidants, such as environmental pollution and acetaminophen; viruses, including rhinovirus; and agents that cause barrier disruption, such as house dust mite allergens. The pathology associated with each stimulus is considered, and potential future treatments arising from research on their effects are presented.
AuthorsChristopher L Grainge, Donna E Davies
JournalChest (Chest) Vol. 144 Issue 6 Pg. 1906-1912 (Dec 2013) ISSN: 1931-3543 [Electronic] United States
PMID24297122 (Publication Type: Journal Article, Review)
Chemical References
  • Anti-Asthmatic Agents
  • Oxidants
Topics
  • Animals
  • Anti-Asthmatic Agents (therapeutic use)
  • Asthma (drug therapy, etiology, pathology)
  • Environmental Exposure (adverse effects)
  • Humans
  • Immunity, Innate
  • Lung (pathology)
  • Oxidants (adverse effects, pharmacology)
  • Pyroglyphidae
  • Respiratory Mucosa (drug effects, injuries, virology)
  • Treatment Outcome
  • Viruses

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: