HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

SHetA2 interference with mortalin binding to p66shc and p53 identified using drug-conjugated magnetic microspheres.

Abstract
SHetA2 is a small molecule flexible heteroarotinoid (Flex-Het) with promising cancer prevention and therapeutic activity. Extensive preclinical testing documented lack of SHetA2 toxicity at doses 25 to 150 fold above effective doses. Knowledge of the SHetA2 molecular target(s) that mediate(s) the mechanism of SHetA2 action is critical to appropriate design of clinical trials and improved analogs. The aim of this study was to develop a method to identify SHetA2 binding proteins in cancer cells. A known metabolite of SHetA2 that has a hydroxyl group available for attachment was synthesized and conjugated to a linker for attachment to a magnetic microsphere. SHetA2-conjugated magnetic microspheres and unconjugated magnetic microspheres were separately incubated with aliquots of a whole cell protein extract from the A2780 human ovarian cancer cell line. After washing away non-specifically bound proteins with the protein extraction buffer, SHetA2-binding proteins were eluted with an excess of free SHetA2. In two independent experiments, an SDS gel band of about 72 kDa was present at differential levels in wells of eluent from SHetA2-microspheres in comparison to wells of eluent from unconjugated microspheres. Mass spectrometry analysis of the bands (QStar) and straight eluents (Orbitrap) identified mortalin (HSPA9) to be present in the eluent from SHetA2-microspheres and not in eluent from unconjugated microspheres. Co-immunoprecipitation experiments demonstrated that SHetA2 interfered with mortalin binding to p53 and p66 Src homologous-collagen homologue (p66shc) inside cancer cells. Mortalin and SHetA2 conflictingly regulate the same molecules involved in mitochondria-mediated intrinsic apoptosis. The results validate the power of this protocol for revealing drug targets.
AuthorsDoris Mangiaracina Benbrook, Baskar Nammalwar, Andrew Long, Hiroyuki Matsumoto, Anil Singh, Richard A Bunce, K Darrell Berlin
JournalInvestigational new drugs (Invest New Drugs) Vol. 32 Issue 3 Pg. 412-23 (Jun 2014) ISSN: 1573-0646 [Electronic] United States
PMID24254390 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.)
Chemical References
  • (((4-nitrophenyl)amino)(2,2,4,4-tetramethyl thiochroman-6-yl)amino) methane-1-thione
  • Chromans
  • HSP70 Heat-Shock Proteins
  • SHC1 protein, human
  • Shc Signaling Adaptor Proteins
  • Src Homology 2 Domain-Containing, Transforming Protein 1
  • Thiones
  • Tumor Suppressor Protein p53
  • mortalin
Topics
  • Cell Line, Tumor
  • Chromans (pharmacology)
  • HSP70 Heat-Shock Proteins (metabolism)
  • Humans
  • Magnetic Phenomena
  • Microspheres
  • Shc Signaling Adaptor Proteins (metabolism)
  • Src Homology 2 Domain-Containing, Transforming Protein 1
  • Thiones (pharmacology)
  • Tumor Suppressor Protein p53 (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: