HOMEPRODUCTSSERVICESCOMPANYCONTACTFAQResearchDictionaryPharmaMobileSign Up FREE or Login

The role of CYP11A1 in the production of vitamin D metabolites and their role in the regulation of epidermal functions.

Abstract
Research over the last decade has revealed that CYP11A1 can hydroxylate the side chain of vitamin D3 at carbons 17, 20, 22 and 23 to produce at least 10 metabolites, with 20(OH)D3, 20,23(OH)2D3, 20,22(OH)2D3, 17,20(OH)2D3 and 17,20,23(OH)3D3 being the main products. However, CYP11A1 does not act on 25(OH)D3. The placenta, adrenal glands and epidermal keratinocytes have been shown to metabolize vitamin D3 via this CYP11A1-mediated pathway that is modified by the activity of CYP27B1, with 20(OH)D3 (the major metabolite), 20,23(OH)2D3, 1,20(OH)2D3, 1,20,23(OH)3D3 and 17,20,23(OH)3D3 being detected, defining these secosteroids as endogenous regulators/natural products. This is supported by the detection of a mono-hydroxyvitamin D3 with the retention time of 20(OH)D3 in human serum. In new work presented here we demonstrate that the CYP11A1-initiated pathways also occurs in Caco-2 colon cells. Our previous studies show that 20(OH)D3 and 20,23(OH)2D3 are non-calcemic at pharmacological doses, dependent in part on their lack of a C1α hydroxyl group. In epidermal keratinocytes, 20(OH)D3, 20(OH)D2 and 20,23(OH)2D3 inhibited cell proliferation, stimulated differentiation and inhibited NF-κB activity with potencies comparable to 1,25(OH)2D3, acting as partial agonists on the VDR. 22(OH)D3 and 20,22(OH)2D3, as well as secosteroids with a short or no side chain, showed antiproliferative and prodifferentiation effects, however, with lower potency than 20(OH)D3 and 20,23(OH)2D3. The CYP11A1-derived secosteroids also inhibited melanocyte proliferation while having no effect on melanogenesis, and showed anti-melanoma activities in terms of inhibiting proliferation and the ability to grow in soft agar. Furthermore, 20(OH)D3 and 20,23(OH)2D3 showed anti-fibrosing effects in vitro, and also in vivo for the former. New data presented here shows that 20(OH)D3 inhibits LPS-induced production of TNFα in the J774 line, TNFα and IL-6 in peritoneal macrophages and suppresses the production of proinflammatory Th1/Th17-related cytokines, while promoting the production of the anti-inflammatory cytokine IL-10 in vivo. In summary, CYP11A1 initiates new pathways of vitamin D metabolism in a range of tissues and products could have important physiological roles at the local or systemic level. In the skin, CYP11A1-derived secosteroids could serve both as endogenous regulators of skin functions and as excellent candidates for treatment of hyperproliferative and inflammatory skin disorders, and skin cancer. This article is part of a Special Issue entitled '16th Vitamin D Workshop'.
AuthorsAndrzej T Slominski, Tae-Kang Kim, Wei Li, Ae-Kyung Yi, Arnold Postlethwaite, Robert C Tuckey
JournalThe Journal of steroid biochemistry and molecular biology (J Steroid Biochem Mol Biol) Vol. 144 Pt A Pg. 28-39 (Oct 2014) ISSN: 1879-1220 [Electronic] England
PMID24176765 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, U.S. Gov't, Non-P.H.S., Review)
CopyrightCopyright © 2013 Elsevier Ltd. All rights reserved.
Chemical References
  • Secosteroids
  • Vitamins
  • Vitamin D
  • Cholesterol Side-Chain Cleavage Enzyme
Topics
  • Animals
  • Cholesterol Side-Chain Cleavage Enzyme (metabolism)
  • Epidermis (drug effects, metabolism)
  • Humans
  • Secosteroids (chemistry, pharmacology)
  • Vitamin D (metabolism)
  • Vitamins (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research network!


Choose Username:
Email:
Password:
Verify Password: