HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Osmotic stress-induced polyamine oxidation mediates defence responses and reduces stress-enhanced grapevine susceptibility to Botrytis cinerea.

Abstract
Abiotic factors inducing osmotic stress can influence the plant immune response and resistance to pathogen infections. In this study, the effect of polyethylene glycol (PEG)- and sucrose-induced osmotic stress on polyamine (PA) homeostasis and the basal immune response in grapevine plantlets before and after Botrytis cinerea infection was determined. Pharmacological approaches were also addressed to assess the contribution of osmotic stress-induced PA oxidation to the regulation of defence responses and the susceptibility of grapevine to B. cinerea. Following osmotic stress or pathogen infection, PA homeostasis was linked to enhanced activity of diamine oxidases (CuAO) and PA oxidases (PAO) and the production of 1,3-diaminopropane. These responses paralleled the accumulation of the main stilbenic phytoalexins, resveratrol and ε-viniferin and upregulation of gene transcripts including STS (a stilbene synthase), PR-2 (a β-1,3-glucanase), PR3-4c (acidic chitinase IV), and PR-5 (a thaumatin-like protein), as well as NCED2 involved in abscisic acid biosynthesis. It was also demonstrated that leaves pre-exposed to osmotic stress and later inoculated with B. cinerea showed enhanced PA accumulation and attenuation of CuAO and PAO activities. This was consistent with the impaired production of phytoalexins and transcript levels of defence- and stress-related genes following infection, and the enhanced susceptibility to B. cinerea. Pharmacological experiments revealed that, under osmotic stress conditions, CuAO and PAO were involved in PA homeostasis and in the regulation of defence responses. Specific inhibition of CuAO and PAO in osmotically stressed leaves strongly attenuated the induction of defence responses triggered by B. cinerea infection and enhanced susceptibility to the pathogen. Taken together, this study reveals a contribution of PA catabolism to the resistance state through modulation of immune response in grapevine following osmotic stress and/or after B. cinerea infection.
AuthorsSaloua Hatmi, Patricia Trotel-Aziz, Sandra Villaume, Michel Couderchet, Christophe Clément, Aziz Aziz
JournalJournal of experimental botany (J Exp Bot) Vol. 65 Issue 1 Pg. 75-88 (Jan 2014) ISSN: 1460-2431 [Electronic] England
PMID24170740 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Plant Proteins
  • Polyamines
  • Sesquiterpenes
  • Polyethylene Glycols
  • Sucrose
  • Amine Oxidase (Copper-Containing)
  • Oxidoreductases Acting on CH-NH Group Donors
  • polyamine oxidase
  • Phytoalexins
Topics
  • Amine Oxidase (Copper-Containing) (metabolism)
  • Botrytis (pathogenicity, physiology)
  • Disease Susceptibility
  • Gene Expression Regulation, Plant
  • Homeostasis
  • Osmotic Pressure
  • Oxidation-Reduction
  • Oxidoreductases Acting on CH-NH Group Donors (metabolism)
  • Plant Diseases (immunology, microbiology)
  • Plant Immunity
  • Plant Leaves (enzymology, immunology, microbiology, physiology)
  • Plant Proteins (genetics, metabolism)
  • Polyamines (analysis, metabolism)
  • Polyethylene Glycols (pharmacology)
  • Sesquiterpenes (analysis, metabolism)
  • Sucrose (pharmacology)
  • Vitis (enzymology, immunology, microbiology, physiology)
  • Phytoalexins

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: