HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Can DCE-MRI explain the heterogeneity in radiopeptide uptake imaged by SPECT in a pancreatic neuroendocrine tumor model?

Abstract
Although efficient delivery and distribution of treatment agents over the whole tumor is essential for successful tumor treatment, the distribution of most of these agents cannot be visualized. However, with single-photon emission computed tomography (SPECT), both delivery and uptake of radiolabeled peptides can be visualized in a neuroendocrine tumor model overexpressing somatostatin receptors. A heterogeneous peptide uptake is often observed in these tumors. We hypothesized that peptide distribution in the tumor is spatially related to tumor perfusion, vessel density and permeability, as imaged and quantified by DCE-MRI in a neuroendocrine tumor model. Four subcutaneous CA20948 tumor-bearing Lewis rats were injected with the somatostatin-analog (111)In-DTPA-Octreotide (50 MBq). SPECT-CT and MRI scans were acquired and MRI was spatially registered to SPECT-CT. DCE-MRI was analyzed using semi-quantitative and quantitative methods. Correlation between SPECT and DCE-MRI was investigated with 1) Spearman's rank correlation coefficient; 2) SPECT uptake values grouped into deciles with corresponding median DCE-MRI parametric values and vice versa; and 3) linear regression analysis for median parameter values in combined datasets. In all tumors, areas with low peptide uptake correlated with low perfusion/density/ /permeability for all DCE-MRI-derived parameters. Combining all datasets, highest linear regression was found between peptide uptake and semi-quantitative parameters (R(2)>0.7). The average correlation coefficient between SPECT and DCE-MRI-derived parameters ranged from 0.52-0.56 (p<0.05) for parameters primarily associated with exchange between blood and extracellular extravascular space. For these parameters a linear relation with peptide uptake was observed. In conclusion, the 'exchange-related' DCE-MRI-derived parameters seemed to predict peptide uptake better than the 'contrast amount- related' parameters. Consequently, fast and efficient diffusion through the vessel wall into tissue is an important factor for peptide delivery. DCE-MRI helps to elucidate the relation between vascular characteristics, peptide delivery and treatment efficacy, and may form a basis to predict targeting efficiency.
AuthorsKarin Bol, Joost C Haeck, Harald C Groen, Wiro J Niessen, Monique R Bernsen, Marion de Jong, Jifke F Veenland
JournalPloS one (PLoS One) Vol. 8 Issue 10 Pg. e77076 ( 2013) ISSN: 1932-6203 [Electronic] United States
PMID24116203 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Contrast Media
  • Indium Radioisotopes
  • Somatostatin
  • Pentetic Acid
  • Octreotide
Topics
  • Animals
  • Contrast Media (chemistry, pharmacokinetics)
  • Indium Radioisotopes (chemistry, pharmacokinetics)
  • Magnetic Resonance Imaging (methods)
  • Male
  • Neuroendocrine Tumors (diagnosis)
  • Octreotide (chemistry, pharmacokinetics)
  • Pancreas (pathology)
  • Pancreatic Neoplasms (diagnosis)
  • Pentetic Acid (chemistry, pharmacokinetics)
  • Rats
  • Rats, Inbred Lew
  • Somatostatin (analogs & derivatives)
  • Tomography, Emission-Computed, Single-Photon (methods)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: