HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Sirtuin 3 deficiency does not augment hypoxia-induced pulmonary hypertension.

Abstract
Alveolar hypoxia elicits increases in mitochondrial reactive oxygen species (ROS) signaling in pulmonary arterial (PA) smooth muscle cells (PASMCs), triggering hypoxic pulmonary vasoconstriction. Mice deficient in sirtuin (Sirt) 3, a nicotinamide adenine dinucleotide-dependent mitochondrial deacetylase, demonstrate enhanced left ventricular hypertrophy after aortic banding, whereas cells from these mice reportedly exhibit augmented hypoxia-induced ROS signaling and hypoxia-inducible factor (HIF)-1 activation. We therefore tested whether deletion of Sirt3 would augment hypoxia-induced ROS signaling in PASMCs, thereby exacerbating the development of pulmonary hypertension (PH) and right ventricular hypertrophy. In PASMCs from Sirt3 knockout (Sirt3(-/-)) mice in the C57BL/6 background, we observed that acute hypoxia (1.5% O2; 30 min)-induced changes in ROS signaling, detected using targeted redox-sensitive, ratiometric fluorescent protein sensors (roGFP) in the mitochondrial matrix, intermembrane space, and the cytosol, were indistinguishable from Sirt3(+/+) cells. Acute hypoxia-induced cytosolic calcium signaling in Sirt3(-/-) PASMCs was also indistinguishable from Sirt3(+/+) cells. During sustained hypoxia (1.5% O2; 16 h), Sirt3 deletion augmented mitochondrial matrix oxidant stress, but this did not correspond to an augmentation of intermembrane space or cytosolic oxidant signaling. Sirt3 deletion did not affect HIF-1α stabilization under normoxia, nor did it augment HIF-1α stabilization during sustained hypoxia (1.5% O2; 4 h). Sirt3(-/-) mice housed in chronic hypoxia (10% O2; 30 d) developed PH, PA wall remodeling, and right ventricular hypertrophy that was indistinguishable from Sirt3(+/+) littermates. Thus, Sirt3 deletion does not augment hypoxia-induced ROS signaling or its consequences in the cytosol of PASMCs, or the development of PH. These findings suggest that Sirt3 responses may be cell type specific, or restricted to certain genetic backgrounds.
AuthorsGregory B Waypa, Scott W Osborne, Jeremy D Marks, Sara K Berkelhamer, Jyothisri Kondapalli, Paul T Schumacker
JournalAmerican journal of respiratory cell and molecular biology (Am J Respir Cell Mol Biol) Vol. 49 Issue 6 Pg. 885-91 (Dec 2013) ISSN: 1535-4989 [Electronic] United States
PMID24047466 (Publication Type: Journal Article, Research Support, N.I.H., Extramural)
Chemical References
  • Hif1a protein, mouse
  • Hypoxia-Inducible Factor 1, alpha Subunit
  • Reactive Oxygen Species
  • Sirt3 protein, mouse
  • Sirtuin 3
Topics
  • Animals
  • Calcium Signaling
  • Female
  • Hypertension, Pulmonary (etiology, metabolism, pathology)
  • Hypertrophy, Right Ventricular (etiology, metabolism, pathology)
  • Hypoxia (complications, metabolism)
  • Hypoxia-Inducible Factor 1, alpha Subunit (metabolism)
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Mitochondria, Muscle (metabolism)
  • Myocytes, Smooth Muscle (metabolism, pathology)
  • Pulmonary Artery (metabolism, pathology)
  • Reactive Oxygen Species (metabolism)
  • Sirtuin 3 (deficiency, genetics, physiology)
  • Vasoconstriction (physiology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: