HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Characterization of a hybrid dielectrophoresis and immunocapture microfluidic system for cancer cell capture.

Abstract
The capture of circulating tumor cells (CTCs) from cancer patient blood enables early clinical assessment as well as genetic and pharmacological evaluation of cancer and metastasis. Although there have been many microfluidic immunocapture and electrokinetic techniques developed for isolating rare cancer cells, these techniques are often limited by a capture performance tradeoff between high efficiency and high purity. We present the characterization of shear-dependent cancer cell capture in a novel hybrid DEP-immunocapture system consisting of interdigitated electrodes fabricated in a Hele-Shaw flow cell that was functionalized with a monoclonal antibody, J591, which is highly specific to prostate-specific membrane antigen expressing prostate cancer cells. We measured the positive and negative DEP response of a prostate cancer cell line, LNCaP, as a function of applied electric field frequency, and showed that DEP can control capture performance by promoting or preventing cell interactions with immunocapture surfaces, depending on the sign and magnitude of the applied DEP force, as well as on the local shear stress experienced by cells flowing in the device. This work demonstrates that DEP and immunocapture techniques can work synergistically to improve cell capture performance, and it will aid in the design of future hybrid DEP-immunocapture systems for high-efficiency CTC capture with enhanced purity.
AuthorsChao Huang, Steven M Santana, He Liu, Neil H Bander, Benjamin G Hawkins, Brian J Kirby
JournalElectrophoresis (Electrophoresis) Vol. 34 Issue 20-21 Pg. 2970-9 (Nov 2013) ISSN: 1522-2683 [Electronic] Germany
PMID23925921 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.)
Copyright© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chemical References
  • Antibodies, Immobilized
  • Antibodies, Monoclonal
  • J591 monoclonal antibody
Topics
  • Antibodies, Immobilized (chemistry)
  • Antibodies, Monoclonal (chemistry)
  • Cell Line, Tumor
  • Cell Separation (instrumentation)
  • Electrodes
  • Equipment Design
  • Humans
  • Male
  • Microfluidic Analytical Techniques (instrumentation)
  • Neoplastic Cells, Circulating (pathology)
  • Prostatic Neoplasms (blood, pathology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: