Further investigations of the role of acetylation in sulphonamide hypersensitivity reactions.

Abstract Sulphonamide hypersensitivity reactions are believed to be mediated through reactive intermediates derived from oxidation of the paraamino group to form sulphonamide hydroxylamines. Sulphamethoxazole hydroxylamine (SMX-HA) can be acetylated by N-acetyltransferase (NAT) enzymes to form an acetoxy metabolite (acetoxySMX). In the current studies, acetoxySMX was found to be not toxic over the concentration range of 0 to 500 μM towards a human lymphoblastoid cell line (RPMI 1788) or a human hepatoma cell line (HepG2). Further, transient expression of NAT1 in COS-1 cells or stable transfection of NAT1 andNAT2 in HepG2 cells did not alter the toxicity of SMX-HA in vitro. The activity of NAT1 in isolated mononuclear leucocytes (a reflection of systemic NAT1 activity) determined with paraaminobenzoic acid as a substrate was not different between controls (n = 11) or patients with a known hypersensitivity reaction (n = 5) (4.1 ±1.2 nmol min(-1)mg(-1) vs 5.7 ± 1.4 nmol min(-1) mg(-1)). Thus, acetoxy SMX is unlikely to play a significant role in mediating SMX hypersensitivity reactions anda constitutive deficiency in NAT1 activity is not a common finding in patients susceptible to SMX hypersensitivity reactions.
AuthorsC E Nuss, D M Grant, S P Spielberg, A E Cribb
JournalBiomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals (Biomarkers) Vol. 1 Issue 4 Pg. 267-72 ( 1996) ISSN: 1354-750X [Print] England
PMID23888994 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research network!

Choose Username:
Verify Password: